Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Minimal effect of iron fertilization on sea-surface carbon dioxide concentrations

Abstract

IT has long been hypothesized that iron concentrations limit phyto-plankton productivity in some parts of the ocean1–3. As a result, iron may have played a role in modulating atmospheric CO2 levels between glacial and interglacial times4, and it has been proposed5 that large-scale deposition of iron in the ocean might be an effective way to combat the rise of anthropogenic CO2 in the atmosphere. As part of an experiment in the equatorial Pacific Ocean6, we observed the effect on dissolved CO2 of enriching a small (8x8 km) patch of water with iron. We saw significant depression of surface fugacities of CO2 within 48 hours of the iron release, which did not change systematically after that time. But the effect was only a small fraction (10%) of the CO2 drawdown that would have occurred had the enrichment resulted in the complete utilization of all the available nitrate and phosphate. Thus artificial fertilization of this ocean region did not cause a very large change in the surface CO2 concentration, in contrast to the effect observed in incubation experiments3, where addition of similar concentra-tions of iron usually results in complete depletion of nutrients. Although our experiment does not necessarily mimic all circum-stances under which iron deposition might occur naturally, our results do not support the idea that iron fertilization would signifi-cantly affect atmospheric CO2 concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hart, T. J. Discovery Rep. 8, 1–268 (1934).

    Google Scholar 

  2. Moore, R. M., Milley, J. E. & Chatt, A. Oceanologica Acta 7, 221–228 (1984).

    CAS  Google Scholar 

  3. Martin, J. H., Fitzwater, S. E. & Gordon, R. M. Globl Biogeochem. Cycles 4, 5–12 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Martin, J. H. Paleoceanography 5, 1–13 (1990).

    Article  ADS  Google Scholar 

  5. Morel, F. M. M. & Chisholm, S. W. Limnol. Oceanogr. 36(8), preface (1991).

  6. Martin, J. H. et al. 371, 123–129 (1994).

  7. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Frost, B. W. Limnol. Oceanogr. 36, 1616–1630 (1991).

    Article  ADS  Google Scholar 

  9. Smith, W. O. & Nelson, D. M. Limnol. Oceanogr. 35, 809–821 (1990).

    Article  ADS  Google Scholar 

  10. Mitchell, B. G., Brody, E. A., Holm-Hansen, O., McClain, C. & Bishop, J. Limnol. Oceanogr. 36, 1662–1677 (1991).

    Article  ADS  Google Scholar 

  11. Wanninkhof, R., Ledwell, J. R. & Watson, A. J. J. geophys. Res. 96, 8733–8740 (1991).

    Article  ADS  Google Scholar 

  12. Upstill-Goddard, R. C., Watson, A. J., Wood, J. & Liddicoat, M. I. Analytica chim. Acta 249, 555–562 (1991).

    Article  CAS  Google Scholar 

  13. Liss, P. S. & Merlivat, L. in The Role of Air-sea Exchange in Geochemical Cycling (ed. Buat-Menard, P.) 113–127 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  14. Watson, A. J., Upstill-Goddard, R. C. & Liss, P. S. Nature 349, 145–147 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Watson, A. J., Liss, P. S. & Duce, R. A. Limnol. Oceanogr. 36, 1960–1965 (1991).

    Article  ADS  Google Scholar 

  16. Law, C. S., Watson, A. J. & Liddicoat, M. I. (in the press).

  17. Goyet, C. & Poisson, A. Deep-Sea Res. 36, 1635–1654 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K. & Wong, C. S. Mar. Chem. 44, 167–188 (1993).

    Article  CAS  Google Scholar 

  19. Millero, F. J., Zhang, J.-Z., Lee, K. & Campbell, D. M. Mar. Chem 44, 153–166 (1993).

    Article  CAS  Google Scholar 

  20. Wanninkhof, R. H. & Thoning, K. Mar. Chem. 44, 189–204 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, A., Law, C., Van Scoy, K. et al. Minimal effect of iron fertilization on sea-surface carbon dioxide concentrations. Nature 371, 143–145 (1994). https://doi.org/10.1038/371143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371143a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing