Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cellular model of braided rivers

Abstract

A BROAD sheet of water flowing over non-cohesive sediment typically breaks up into a network of interconnected channels called a braided stream (Fig. 1). The dynamics of such networks are complex; channels migrate laterally, split, rejoin and develop bars, with the flow shifting unpredictably from one part of the network to another. Many processes are known to operate in a braided river1–3, but it is unclear which of these are essential to explain the observed dynamics. We describe here a simple, deterministic numerical model of water flow over a cohesionless bed that captures the main spatial and temporal features of real braided rivers. The patterns arise from local scour and deposition caused by a nonlinear dependence of bedload sediment flux on water discharge. Although the morphology of the resulting network depends in detail on the sediment-transport rule used in the model, our results suggest that the only factors essential for braiding are bedload sediment transport and laterally unconstrained free-surface flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ferguson, R.I. in Braided Rivers (eds Best, J. L. & Bristow, C. S.) 73–87 (Geological Soc. London, London, 1993).

    Google Scholar 

  2. Bristow, C. S. & Best, J. L. in Braided Rivers (eds Best, J. L. & Bristow, C. S.) 1–11 (Geological Soc. London, London, 1993).

    Google Scholar 

  3. Bridge, J. S. in Braided Rivers (eds Best, J. L. & Bristow, C. S.) 13–71 (Geological Soc. London, London, 1993).

    Google Scholar 

  4. Anderson, R. Earth Sci. Rev. 28, 77–96 (1990).

    Article  ADS  Google Scholar 

  5. Chase, C. G. Geomorphology 5, 39–57 (1992).

    Article  ADS  Google Scholar 

  6. Forrest, S. B. & Haff, P. K. Science 255, 1240–1243 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Werner, B. T. & Hallet, B. Nature 361, 142–145 (1993).

    Article  ADS  Google Scholar 

  8. Tetzlaff, D. M. & Harbaugh, J. W. Simulating Clastic Sedimentation (Van Nostrand Reinhold, New York, 1989).

    Book  Google Scholar 

  9. Werner, B. T. & Fink, T. M. Science 260, 968–971 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Ashmore, P. E. Process and Form in Gravel Braided Streams: Laboratory Modelling and Field Observations (Univ. of Alberta, Edmonton, 1985).

    Google Scholar 

  11. Hong, L. B. & Davies, T. R. H. Geol. Soc. Am. Bull. Part II 90, 1839–1859 (1979).

    Article  ADS  Google Scholar 

  12. Ashmore, P. E. Earth Surf. Processes & Landforms 7, 201–225 (1982).

    Article  ADS  Google Scholar 

  13. Lysne, D. K. J. hydr. Div. Am. Soc. Civil Engrs 95, 1835–1846 (1969).

    Google Scholar 

  14. Fredsoe, J. J. fluid Mech. 64, 1–16 (1974).

    Article  ADS  Google Scholar 

  15. Blondeaux, P. & Seminara, G. J. fluid Mech. 157, 449–470 (1985).

    Article  ADS  Google Scholar 

  16. Parker, G. J. hydr. Engng. 110, 197–199 (1984).

    Article  Google Scholar 

  17. Parker, G. J. fluid Mech. 89, 127–146 (1978).

    Article  ADS  Google Scholar 

  18. Young, W. J. & Davies, T. R. H. Earth Surf. Processes & Landforms 16, 499–511 (1991).

    Article  ADS  Google Scholar 

  19. Hoey, T. Prog. phys. Geogr. 16, 319–338 (1992).

    Article  Google Scholar 

  20. Hoey, T. B. & Sutherland, A. J. Earth Surf. Processes & Landforms 16, 447–462 (1991).

    Article  ADS  Google Scholar 

  21. Ashmore, P. Geogr. Annlr. A73, 37–52 (1991).

    Article  Google Scholar 

  22. Goff, J. R. & Ashmore, P. Earth Surf. Processes & Landforms 19, 195–212 (1994).

    Article  ADS  Google Scholar 

  23. Parker, G. J. fluid Mech. 76, 457–480 (1976).

    Article  ADS  Google Scholar 

  24. Fredsoe, J. J. fluid Mech. 84, 609–624 (1978).

    Article  ADS  Google Scholar 

  25. Ashmore, P. E. Can J. Earth Sci. 28, 326–341 (1991).

    Article  ADS  Google Scholar 

  26. Robertson-Rintoul, M. S. E. & Richards, K. S. in Braided Rivers (eds Best, J. L. & Bristow, C. S.) 113–118 (Geological Soc. London, London, 1993).

    Google Scholar 

  27. Schumm, S. A. Mosley, M. P. & Weaver, W. E. Experimental Fluvial Geomorphology (Wiley, New York, 1987).

    Google Scholar 

  28. Schumm, S. A. & Khan, H. R. Geol. Soc. Am. Bull. 83, 1755–1770 (1972).

    Article  ADS  Google Scholar 

  29. Howard, A. D., Keetch, M. E. & Linwood, V. Water Resour. Res. 6, 1647–1688 (1970).

    Article  Google Scholar 

  30. Church, M. & Jones, D. in Gravel-bed Rivers (eds Hey, R. D., Bathurst, J. C. & Thorne, C. R.) 291–339 (J. Wiley, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, A., Paola, C. A cellular model of braided rivers. Nature 371, 54–57 (1994). https://doi.org/10.1038/371054a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371054a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing