Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of transforming growth factor-β is inhibited in transgenic apolipoprotein(a) mice

Abstract

A HIGH concentration of serum lipoprotein(a) is a risk factor for atherosclerosis1–3. Lipoprotein(a) consists of low-density lipoprotein with the additional protein component, apolipoprotein(a), a homologue of plasminogen4. Lipoprotein(a) and apolipoprotein(a) enhance proliferation of human vascular smooth muscle cells (hVSMCs) in culture by inhibiting activation of plasminogen to plasmin, thus blocking the proteolytic activation of transforming growth factor-β (TGF-β)5, an autocrine inhibitor of hVSMC proliferation5,6. The hypothesis that this pathway is a key step in atherogenesis5 is tested on transgenic mice expressing the human apolipoprotein(a) gene. We show here that the activation of TGF-β is inhibited in the aortic wall and serum of mice expressing apolipoprotein(a), as a consequence of apolipoprotein(a) inhibition of plasminogen activation. These effects are closely correlated with VSMC activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Utermann, G. Science 246, 904–910 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Genest, J. et al. Circulation 85, 2025–2033 (1992).

    Article  Google Scholar 

  3. Schreiner, P. et al. Arterioscl. Thromb. 13, 826–833 (1993).

    Article  CAS  Google Scholar 

  4. McLean, J. W. et al. Nature 330, 132–137 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Grainger, D. J. et al. Science 260, 1655–1659 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Kirschenlohr, H. L., Metcalfe, J. C., Weissberg, P. L. & Grainger, D. J. Am. J. Physiol. 265, C571–C576 (1993).

    Article  CAS  Google Scholar 

  7. Lawn, R. M., Wade, D. P., Hammer, R. E., Verstuyft, J. G. & Rubin, E. M. Nature 360, 670–672 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Chiesa, G. et al. J. biol. Chem. 267, 24369–24374 (1992).

    CAS  PubMed  Google Scholar 

  9. Rath, M. et al. Arteriosclerosis 9, 579–592 (1989).

    Article  CAS  Google Scholar 

  10. Cushing, G. L. et al. Arteriosclerosis 9, 593–603 (1989).

    Article  CAS  Google Scholar 

  11. Kreutzer, J. et al. Chem. Phys. Lipids 67/68, 175–190 (1994).

    Article  Google Scholar 

  12. Miles, L. A. & Plow, E. F. Thromb. Haemostasis 63, 331–335 (1990).

    Article  CAS  Google Scholar 

  13. Kojima, S., Harpel, P. C. & Rifkin, D. B. J. Cell Biol. 113, 1439–1445 (1991).

    Article  CAS  Google Scholar 

  14. Massague, J. A. Rev. Cell Biol. 6, 597–641 (1990).

    Article  CAS  Google Scholar 

  15. Shanahan, C. M., Weissberg, P. L. & Metcalfe, J. C. Circ. Res. 73, 193–204 (1993).

    Article  CAS  Google Scholar 

  16. Giacelli, C., Bae, N., Lombardi, D., Majesky, M. & Schwartz, S. Biochem. biophys. Res. Commun. 177, 867–873 (1991).

    Article  Google Scholar 

  17. Giacelli, C. M. et al. J. clin. Invest. 92, 1686–1696 (1993).

    Article  Google Scholar 

  18. Gadeau, A. P., Campan, M., Millet, D., Candresse, T. & Desgranges, C. Arterioscl. Thromb. 13, 120–125 (1993).

    Article  CAS  Google Scholar 

  19. O'Brien, E. R. et al. Circ. Res. 73, 223–231 (1993).

    Article  CAS  Google Scholar 

  20. Campbell, J. H., Reardon, M. F., Campbell, G. R. & Nestel, P. J. Arteriosclerosis 5, 318–324 (1985).

    Article  CAS  Google Scholar 

  21. Rinderknecht, H. Experientia 16, 430–436 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grainger, D., Kemp, P., Liu, A. et al. Activation of transforming growth factor-β is inhibited in transgenic apolipoprotein(a) mice. Nature 370, 460–462 (1994). https://doi.org/10.1038/370460a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370460a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing