Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcriptional repression directed by the yeast α2 protein in vitro

Abstract

THE α2 protein, a homeodomain protein involved in specifying cell type in the budding yeast Saccharomyces cerevisiae, is a transcriptional represser1,2. α2 binds cooperatively with Mcm1, a serum response factor-related protein, to the a-specific gene operator3–6. The α2-Mcm1 complex in turn recruits Ssn6 and Tup1 to the operator, and we believe that these latter two proteins are responsible for the transcriptional repression7–9. Placement of the a-specific gene operator in any of a variety of positions upstream of a test promoter leads to repression of that promoter in vivo9–11. In this respect, the a-specific gene operator resembles a negatively acting enhancer. Here we describe the in vitro reconstitution of this example of negative control from a distance. We observe repression in vitro in the absence of exogenously added activator protein and on templates that lack binding sites for known activator proteins, and we infer that α2-directed repression acts on the general transcription machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Herskowitz, I. Nature 342, 749–757 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Johnson, A. D. in Transcriptional Regulation 975–1006 (Cold Spring Harbor Laboratory Press, New York, 1992).

    Google Scholar 

  3. Keleher, C. A., Goutte, C. & Johnson, A. D. Cell 53, 927–936 (1988).

    Article  CAS  Google Scholar 

  4. Keleher, C. A., Passmore, S. & Johnson, A. D. Molec. cell. Biol. 9, 5228–5230 (1989).

    Article  CAS  Google Scholar 

  5. Passmore, S., Elbe, R. & Tye, B.-K. Genes Dev. 3, 921–935 (1989).

    Article  CAS  Google Scholar 

  6. Ammerer, G. Genes Dev. 4, 299–312 (1990).

    Article  CAS  Google Scholar 

  7. Mukai, Y., Harashima, S. & Oshima, Y. Molec. cell. Biol. 11, 3773–3779 (1991).

    Article  CAS  Google Scholar 

  8. Williams, F. E., Varanasi, U. & Trumbly, R. J. Molec. cell. Biol. 11, 3307–3316 (1991).

    Article  CAS  Google Scholar 

  9. Keleher, C. A., Redd, M. J., Schultz, J., Carlson, M. & Johnson, A. D. Cell 68, 709–719 (1992).

    Article  CAS  Google Scholar 

  10. Johnson, A. D. & Herskowitz, I. Cell 53, 927–936 (1985).

    Google Scholar 

  11. Herschbach, B. H. & Johnson, A. D. Molec. cell. Biol. 13, 4029–4038 (1993).

    Article  CAS  Google Scholar 

  12. Smith, D. & Johnson, A. Cell 68, 133–142 (1992).

    Article  CAS  Google Scholar 

  13. Guarente, L., Lalonde, B., Gifford, P. & Alani, E. Cell 36, 503–11 (1984).

    Article  CAS  Google Scholar 

  14. Stanojevic, D., Hoey, T. & Levine, M. Nature 341, 331–335 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Small, S., Kraut, R. Hoey, T., Warrior, R. & Levine, M. Genes Dev. 5, 827–839 (1991).

    Article  CAS  Google Scholar 

  16. Small, S., Blair, A. & Levine, M. EMBO J. 11, 4047–4057 (1992).

    Article  CAS  Google Scholar 

  17. Saha, S., Brickman, J. M., Lehming, N. & Ptashne, M. Nature 363, 648–652 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Roth, S. Y., Dean, A. & Simpson, R. T. Molec. cell. Biol. 10, 2247–2260 (1990).

    Article  CAS  Google Scholar 

  19. Shimizu, M., Roth, S. Y., Szent-Yorgi, C. & Simpson, R. T. EMBO J. 10, 3033–3041 (1991).

    Article  CAS  Google Scholar 

  20. Roth, S. Y., Shimizu, M., Johnson, L., Grunstein, M. & Simpson, R. T. Genes Dev. 6, 411–425 (1992).

    Article  CAS  Google Scholar 

  21. Emami, K. H. & Carey, M. EMBO J. 11, 5005–5012 (1992).

    Article  CAS  Google Scholar 

  22. Johnson, F. B. & Krasnow, M. A. Genes Dev. 6, 2177–2189 (1992).

    Article  CAS  Google Scholar 

  23. Sze, J.-Y., Woontner, M., Jaehning, J. A. & Kolhaw, G. B. Science 258, 1143–1145 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Wootner, M., Wade, P. A., Bonner, J. & Jaehning, J. A. Molec. cell. Biol. 11, 4555–4560 (1991).

    Article  Google Scholar 

  25. Tatchell, K., Nasmyth, K. A., Hall, B. D., Astell, C. & Smith, M. Cell 27, 25–35 (1981).

    Article  CAS  Google Scholar 

  26. Silicano, P. G. & Tatchell, K. Cell 37, 969–978 (1984).

    Article  Google Scholar 

  27. Schultz, J. & Carlson, M. Molec. cell. Biol. 7, 3637–3645 (1987).

    Article  CAS  Google Scholar 

  28. Johnson, S. thesis, Univ. Washington, Seattle (1991).

  29. Sauer, R. T., Smith, D. L. & Johnson, A. D. Genes Dev. 2, 807–816.

  30. Woontner, M. & Jaehning, J. A. J. biol. Chem. 265, 8979–8982 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herschbach , B., Arnaud, M. & Johnson, A. Transcriptional repression directed by the yeast α2 protein in vitro. Nature 370, 309–311 (1994). https://doi.org/10.1038/370309a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370309a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing