Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Zinc and carbon co-limitation of marine phytoplankton

Abstract

PROCESSES that control carbon uptake by marine phytoplankton are important in the global carbon cycle11–3. Uptake of CO2 itself may be limited by diffusion4. Bicarbonate uptake may be limited by zinc as HCO3 transport appears to involve the zinc metallo-enzyme carbonic anhydrases5,6and the concentration of inorganic zinc in seawater7is low enough to limit the growth of certain phytoplankton in culture8,9. Here we show that HCO3 uptake by the marine diatom Thalassiosira weissflogii is modulated by the partial pressure of CO2 and by the concentration of inorganic Zn (for which Cd and Co may substitute in carbonic anhydrase). This result leads naturally to a 'zinc hypothesis' which, like the standing 'iron hypothesis10, posits that Zn (Fe) may limit oceanic production and influence the global carbon cycle. Because of the large13C enrichment of HCO3 over CO2, our results may be important for the interpretation of δ13C measurements in seawater and sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Raven, J. A. & Johnston, A. M. Limnol. Oceanogr. 36, 1701–1714 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Broecker, W. S. Globl Biogeochem. Cycles 5, 191–192 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Riebesell, U., Wolf-Gladrow, D. A. & Smetacek, V. S. Nature 361, 249–251 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Sultemeyer, D. F., Miller, A. G., Espie, G. S., Fock, H. P. & Canvin, D. T. Pl. Physiol. 89, 1213–1219 (1989).

    Article  CAS  Google Scholar 

  6. Price, G. D. & Badger, M. R. Pl. Physiol. 89, 37–43 (1989).

    Article  CAS  Google Scholar 

  7. Bruland, K. W. Limnol. Oceanogr. 34, 269–285 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Anderson, M. A., Morel, F. M. M. & Guillard, R. R. L. Nature 276, 70–71 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Sunda, W. G. & Huntsman, S. A. Limnol. Oceanogr. 37, 25–40 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Price, N. M. & Morel, F. M. M. Nature 344, 658–660 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Mook, W. G., Bommerson, J. C. & Staverman, W. H. Earth planet. Sci. Lett. 22, 169–176 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Rau, G. H., Takahashi, T., Des Marais, D. J., Repeta, D. J. & Martin, J. H. Geochim. cosmochim. Acta 56, 1413–1419 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Freeman, K. H. & Hayes, J. M. Globl Biogeochem. Cycles 6, 185–198 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Codispoti, L. A., Friederich, G. E., Iverson, R. L. & Hood, D. W. Nature 296, 242–245 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Eldigio, Palisades, New York, 1982).

    Google Scholar 

  17. Bruland, K. W. Limnol. Oceanogr. 37, 1008–1017 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Hudson, R. J. M. & Morel, F. M. M. Deep-Sea Res. 40, 129–150 (1993).

    Article  CAS  Google Scholar 

  19. Price, N. M., Ahner, B. A. & Morel, F. M. M. Limnol. Oceanogr. 39, 520–534 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Quiroga, O. & Gonzalez, E. L. J. Phycol. 29, 321–324 (1993).

    Article  CAS  Google Scholar 

  21. Sikes, S. S. & Wheeler, A. P. J. Phycol. 18, 423–426 (1982).

    Article  CAS  Google Scholar 

  22. Nimer, N. A. & Merrett, M. J. New Phytol. 121, 173–177 (1992).

    Article  CAS  Google Scholar 

  23. Petit, J. R., Briat, M. & Royer, A. Nature 293, 391–393 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Arimoto, R., Duce, R. A., Ray, B. J., Hewitt, A. B. & Williams, J. J. geophys. Res. 92, 8465–8479 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Pedersen, T. F. Geology 11, 16–19 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Price, N. M. et al. Biol. Oceanogr. 6, 443–461 (1988/89).

    Google Scholar 

  27. Graham, D., Reed, M. L., Patterson, B. D. & Hockley, D. G. Annls N. Y. Acad. Sci. 429, 222–237 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, F., Reinfelder, J., Roberts, S. et al. Zinc and carbon co-limitation of marine phytoplankton. Nature 369, 740–742 (1994). https://doi.org/10.1038/369740a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369740a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing