The role of non-deformable units in pressure-induced reversible amorphization of clathrasils

Abstract

PRESSURE-induced amorphization of solids has been much studied since it was first observed in 19841. It was found recently2,3 that some materials can be amorphized reversibly under pressure, reverting back to the original crystalline structure and orientation when the pressure is decreased. It has been suggested4 that the presence of non-deformable units is essential for this reversibility, these units acting as templates around which the original structure is reformed. Here we investigate this idea by comparing the effect of pressure on two clathrasils—silica solids with open, microporous structures—with and without guest molecules inside the pores. We have studied pressure-induced amorphization of dodecasil-3C, which has cage-like voids, and dodecasil-3R, which has two-dimensional channels. For both materials, our experiments and simulations show that amorphization is fully or partly reversible only when guest molecules are present, suggesting that these do indeed act as rigid 'organizing centres' for the reversible transformation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Mishima, O., Calvert, L. D. & Whalley, E. Nature 310, 393–395 (1984).

  2. 2

    Handa, Y. P., Tse, J. S., Klug, D. D. & Whalley, E. J. Chem. Phys. 94, 623–627 (1991).

  3. 3

    Kruger, M. B. & Jeanloz, R. Science 249, 647–649 (1990).

  4. 4

    Tse, J. S. & Klug, D. D. Science 255, 1559–1561 (1992).

  5. 5

    Whalley, E., Mishima, O., Handa, Y. P. & Klug, D. D. Ann. N.Y. Acad. Sci. 484, 81–92 (1986).

  6. 6

    Davidson, D. W. in Water: A Comprehensive Treatise Vol. 2 (ed. Franks, F.) 115–234 (Plenum, New York, 1973).

  7. 7

    van der Waals, J. H. & Platteeuw, J. C. Adv. chem. Phys. 2, 1–57 (1959).

  8. 8

    Gies, H., Liebau, F. & Gerke, H. Angew. Chem. 94, 214–216 (1984).

  9. 9

    Gies, H. Z., Kristallogr. 167, 73–82 (1984).

  10. 10

    Hemley, R. J. et al. Nature 334, 52–54 (1988).

  11. 11

    Gies, H. Z. Kristallogr. 175, 93–104 (1986).

  12. 12

    Etchepore, J., Merian, M. & Kaplan, P. J. chem. Phys. 80, 1873–1876 (1974).

  13. 13

    Bell, R. J. & Dean, P. Discuss. Faraday Soc. 50, 55–60 (1970).

  14. 14

    Glinnemann, J. et al. Z. Kristallogr. 198, 177–212 (1992).

  15. 15

    Meade, C., Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 69, 1387–1390 (1992).

  16. 16

    Klug, D. D., Mishima, O. & Whalley, E. J. chem. Phys. 86, 5323–5328 (1987).

  17. 17

    Tse, J. S., Ripmeester, J. A. & Handa, Y. P. J. Am. chem. Soc. 115, 281–284 (1993).

  18. 18

    Williams, Q. & Jeanloz, R. Nature 338, 413–415 (1989).

  19. 19

    Tse, J. S. & Klug, D. D. Phys. Rev. Lett. 67, 3559–3562 (1991).

  20. 20

    Tse, J. S. J. chem. Phys. 96, 5482–5487 (1992).

  21. 21

    Wolf, D., Okamoto, P. R., Lutsko, J. F. & Kluge, M. J. Mater. Res. 5, 286–301 (1990).

  22. 22

    Born, M. & Huang, K. The Dynamical Theory of Crystal Lattices 140–154 (Oxford Univ. Press, London, 1962).

  23. 23

    Tse, J. S. & Klein, M. L. Phys. Rev. Lett. 58, 1672–1674 (1987).

  24. 24

    Rahman, A. & Parrinello, M. J. appl. Phys. 52, 7182–7190 (1981).

  25. 25

    Nosé, S. & Klein, M. Molec. Phys. 50, 1055–1076 (1983).

  26. 26

    Wyckoff, R. W. G. Crystal Structures Vol. 3 p. 31 (Interscience, New York, 1951).

  27. 27

    Fuji, Y., Kowaka, M. & Onodera, A. J. Phys. C18, 789–797 (1985).

  28. 28

    Sugai, S. J. Phys. C18, 799–808 (1985).

  29. 29

    Melo, F. E. A., Lemos, V., Cerdiera, F. & Mendes, F. Phys. Rev. B35, 3633–3636 (1987).

  30. 30

    Kruger, M. B., Williams, Q. & Jeanloz, R. J. chem. Phys. 91, 5910–5915 (1989).

  31. 31

    Klug, D. D. & Whalley, E. Rev. Sci. Instrum. 54, 1205–1208 (1983).

  32. 32

    Decker, D. L. J. appl. Phys. 42, 3239–3244 (1971).

  33. 33

    Cox, D. E., Hastings, J. B., Cardoso, L. P. & Finger, L. W. in High Resolution Powder Diffraction (ed. Catlow, C. R. A.) 1–20 (Trans Tech, Aedermannsdorf, Switzerland, 1986).

  34. 34

    Fisher, J., Radeka, V. & Smith, G. C. Nucl. Instrum. Meth. A252, 239–245 (1986).

  35. 35

    Mao, H. K. & Bell, P. M. Carnegie Inst. Wash. Yb. 79, 409–411 (1980).

  36. 36

    van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Phys. Rev. Lett. 64, 1955–1958 (1990).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tse, J., Klug, D., Ripmeester, J. et al. The role of non-deformable units in pressure-induced reversible amorphization of clathrasils. Nature 369, 724–727 (1994). https://doi.org/10.1038/369724a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.