Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of non-deformable units in pressure-induced reversible amorphization of clathrasils

Abstract

PRESSURE-induced amorphization of solids has been much studied since it was first observed in 19841. It was found recently2,3 that some materials can be amorphized reversibly under pressure, reverting back to the original crystalline structure and orientation when the pressure is decreased. It has been suggested4 that the presence of non-deformable units is essential for this reversibility, these units acting as templates around which the original structure is reformed. Here we investigate this idea by comparing the effect of pressure on two clathrasils—silica solids with open, microporous structures—with and without guest molecules inside the pores. We have studied pressure-induced amorphization of dodecasil-3C, which has cage-like voids, and dodecasil-3R, which has two-dimensional channels. For both materials, our experiments and simulations show that amorphization is fully or partly reversible only when guest molecules are present, suggesting that these do indeed act as rigid 'organizing centres' for the reversible transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mishima, O., Calvert, L. D. & Whalley, E. Nature 310, 393–395 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Handa, Y. P., Tse, J. S., Klug, D. D. & Whalley, E. J. Chem. Phys. 94, 623–627 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Kruger, M. B. & Jeanloz, R. Science 249, 647–649 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Tse, J. S. & Klug, D. D. Science 255, 1559–1561 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Whalley, E., Mishima, O., Handa, Y. P. & Klug, D. D. Ann. N.Y. Acad. Sci. 484, 81–92 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Davidson, D. W. in Water: A Comprehensive Treatise Vol. 2 (ed. Franks, F.) 115–234 (Plenum, New York, 1973).

    Google Scholar 

  7. van der Waals, J. H. & Platteeuw, J. C. Adv. chem. Phys. 2, 1–57 (1959).

    CAS  Google Scholar 

  8. Gies, H., Liebau, F. & Gerke, H. Angew. Chem. 94, 214–216 (1984).

    Article  Google Scholar 

  9. Gies, H. Z., Kristallogr. 167, 73–82 (1984).

    Article  CAS  Google Scholar 

  10. Hemley, R. J. et al. Nature 334, 52–54 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Gies, H. Z. Kristallogr. 175, 93–104 (1986).

    CAS  Google Scholar 

  12. Etchepore, J., Merian, M. & Kaplan, P. J. chem. Phys. 80, 1873–1876 (1974).

    Article  ADS  Google Scholar 

  13. Bell, R. J. & Dean, P. Discuss. Faraday Soc. 50, 55–60 (1970).

    Article  Google Scholar 

  14. Glinnemann, J. et al. Z. Kristallogr. 198, 177–212 (1992).

    Article  CAS  Google Scholar 

  15. Meade, C., Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 69, 1387–1390 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Klug, D. D., Mishima, O. & Whalley, E. J. chem. Phys. 86, 5323–5328 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Tse, J. S., Ripmeester, J. A. & Handa, Y. P. J. Am. chem. Soc. 115, 281–284 (1993).

    Article  CAS  Google Scholar 

  18. Williams, Q. & Jeanloz, R. Nature 338, 413–415 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Tse, J. S. & Klug, D. D. Phys. Rev. Lett. 67, 3559–3562 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Tse, J. S. J. chem. Phys. 96, 5482–5487 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Wolf, D., Okamoto, P. R., Lutsko, J. F. & Kluge, M. J. Mater. Res. 5, 286–301 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Born, M. & Huang, K. The Dynamical Theory of Crystal Lattices 140–154 (Oxford Univ. Press, London, 1962).

    Google Scholar 

  23. Tse, J. S. & Klein, M. L. Phys. Rev. Lett. 58, 1672–1674 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Rahman, A. & Parrinello, M. J. appl. Phys. 52, 7182–7190 (1981).

    Article  ADS  Google Scholar 

  25. Nosé, S. & Klein, M. Molec. Phys. 50, 1055–1076 (1983).

    Article  ADS  Google Scholar 

  26. Wyckoff, R. W. G. Crystal Structures Vol. 3 p. 31 (Interscience, New York, 1951).

    Google Scholar 

  27. Fuji, Y., Kowaka, M. & Onodera, A. J. Phys. C18, 789–797 (1985).

    ADS  Google Scholar 

  28. Sugai, S. J. Phys. C18, 799–808 (1985).

    ADS  CAS  Google Scholar 

  29. Melo, F. E. A., Lemos, V., Cerdiera, F. & Mendes, F. Phys. Rev. B35, 3633–3636 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Kruger, M. B., Williams, Q. & Jeanloz, R. J. chem. Phys. 91, 5910–5915 (1989).

    Article  ADS  CAS  Google Scholar 

  31. Klug, D. D. & Whalley, E. Rev. Sci. Instrum. 54, 1205–1208 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Decker, D. L. J. appl. Phys. 42, 3239–3244 (1971).

    Article  ADS  CAS  Google Scholar 

  33. Cox, D. E., Hastings, J. B., Cardoso, L. P. & Finger, L. W. in High Resolution Powder Diffraction (ed. Catlow, C. R. A.) 1–20 (Trans Tech, Aedermannsdorf, Switzerland, 1986).

    Google Scholar 

  34. Fisher, J., Radeka, V. & Smith, G. C. Nucl. Instrum. Meth. A252, 239–245 (1986).

    Article  ADS  Google Scholar 

  35. Mao, H. K. & Bell, P. M. Carnegie Inst. Wash. Yb. 79, 409–411 (1980).

    Google Scholar 

  36. van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Phys. Rev. Lett. 64, 1955–1958 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tse, J., Klug, D., Ripmeester, J. et al. The role of non-deformable units in pressure-induced reversible amorphization of clathrasils. Nature 369, 724–727 (1994). https://doi.org/10.1038/369724a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369724a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing