Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision

Abstract

THE relative northward motion of the Indian subcontinent that followed the onset of continental collision with Asia has produced extensive deformation of the Earth's crust, giving rise to the world's highest mountains in the Himalayan chain and the world's largest high-elevation region, the Tibetan plateau. The formation of the broad mountain belt implies that, contrary to the original tenets of plate tectonics, the lithospheric plates have experienced widespread deformation far from the plate boundary1. Several models have been proposed2–6 to explain the manner in which this post-collisional deformation is distributed within the continental lithosphere of the Indian and Asian plates. Here we propose an alternative model in which subduction of the Asian lithospheric mantle develops following the collision of India. Our model is supported by numerical calculations of crustal deformation and thickening, and is consistent with available geological and geophysical data7–9. This picture suggests that lithospheric mantle is not deformed along with the crust, and would imply that continental collision zones are more analogous to oceanic subduction zones than was previously believed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Molnar, P. Nature 335, 131–137 (1988).

    Article  ADS  Google Scholar 

  2. Molnar, P. & Tapponnier, P. Science 189, 419–426 (1975).

    Article  ADS  CAS  Google Scholar 

  3. England, P. & McKenzie, D. P. Geophys. J. R. astr. Soc. 70, 295–321 (1982).

    Article  ADS  Google Scholar 

  4. Argand, E. in C.r. 13th Int. Geol. Congr. Vol. 7 171–372 (Brussels, 1924).

    Google Scholar 

  5. Powell, C. Earth planet. Sci. Lett. 81, 79–94 (1986).

    Article  ADS  Google Scholar 

  6. Zhao, W. & Morgan, W. J. Tectonics 6, 489–504 (1987).

    Article  ADS  Google Scholar 

  7. Molnar, P. Phil Trans. R. Soc. Lond. A327, 33–88 (1988).

    Article  Google Scholar 

  8. Allegre, C. et al. Nature 307, 17–22 (1984).

    Article  ADS  Google Scholar 

  9. Dewey, J. F. et al. Phil Trans. R. Soc. A327, 379–413 (1988).

    Article  ADS  Google Scholar 

  10. Armijo, R. et al. J. geophys. Res. 91, 13803–13872 (1986).

    Article  ADS  Google Scholar 

  11. Le Pichon, X., Fournier, M. & Laurent, J. Tectonics 11, 1085–1098 (1992).

    Article  ADS  Google Scholar 

  12. England, P. & Houseman, G. J. geophys. Res. 91, 3664–3676 (1986).

    Article  ADS  Google Scholar 

  13. Barazangi, M. & Ni, J. Geology 10, 179–185 (1982).

    Article  ADS  Google Scholar 

  14. Bourjot, L. & Romanowicz, B. Geophys. Res. Lett. 19, 881–884 (1992).

    Article  ADS  Google Scholar 

  15. Lyon-Caen, H. Geophys. J. R. astr. Soc. 86, 727–749 (1986).

    Article  ADS  Google Scholar 

  16. Molnar, P. J. Him. Geol. 1, 131–154 (1990).

    Google Scholar 

  17. Houseman, G. A., McKenzie, D. P. & Molnar, P. J. geophys. Res. 86, 6115–6132 (1981).

    Article  ADS  Google Scholar 

  18. Zhou Yun-sheng et al. Geological and Ecological Studies of Qinghai-Xizang Plateau 363–378 (Science Press, Beijing, 1981).

    Google Scholar 

  19. Arnaud, N. O. et al. Earth planet. Sci. Lett. 111, 351–367 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Tapponnier, P. et al. Earth planet. Sci. Lett. 97, 382–403 (1990).

    Article  ADS  Google Scholar 

  21. Willett, S. D., Beaumont, C. & Fullsack, P. Geology 21, 371–374 (1992).

    Article  ADS  Google Scholar 

  22. Royden, L. Trans. Am. geophys. Un. 73, 571 (1992).

    Google Scholar 

  23. Fullsack, P. Geophys. J. Int. (in the press).

  24. Beaumont, C. & Quinlan, G. Geophys. J. Int. 116, 754–783 (1994).

    Article  ADS  Google Scholar 

  25. Beaumont, C. et al. Tectonophysics (in the press).

  26. Brown, R. L. et al. Geology 21, 1015–1018 (1993).

    Article  ADS  Google Scholar 

  27. Uyeda, S. & Kanamori, H. J. geophys. Res. 84, 1049–1061 (1979).

    Article  ADS  Google Scholar 

  28. Tao, W. & O'Connell, R. J. J. geophys. Res. 97, 8877–8904 (1992).

    Article  ADS  Google Scholar 

  29. LeFort, P. Am. J. Sci. 275-A, 1–44 (1975).

    ADS  Google Scholar 

  30. Davis, D., Suppe, J. & Dahlen, F. A. J. geophys. Res. 88, 1153–1172 (1983).

    Article  ADS  Google Scholar 

  31. Turner, S. et al. Nature 364, 50–54 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Besse, J. & Courtillot, V. J. geophys. Res. 96, 4029–4050 (1991).

    Article  ADS  Google Scholar 

  33. Achache, J. & Courtillot, V. J. geophys. Res. 89, 10311–10339 (1984).

    Article  ADS  Google Scholar 

  34. Lin Jinlu & Watts, D. R. Phil Trans R. Soc. A327, 239–262 (1988).

    Article  ADS  Google Scholar 

  35. Thomas, J.-C. et al. J. geophys. Res. 98, 9571–9589 (1993).

    Article  ADS  Google Scholar 

  36. Li, Y. et al. Geophys. Res. Lett. 5, 217–220 (1988).

    Article  ADS  Google Scholar 

  37. Chen, Y. et al. J. geophys. Res. 96, 4065–4082 (1991).

    Article  ADS  Google Scholar 

  38. Molnar, P. Ann. Geophys. 5, 663–670 (1987).

    Google Scholar 

  39. Coward, M. P. et al. J. geol. Soc. Lond. 144, 377–391 (1987).

    Article  Google Scholar 

  40. Srivastava, P. & Mitra, G. Tectonics (in the press).

  41. Brandon, C. & Romanowicz, B. J. geophys. Res. 91, 6547–6564 (1986).

    Article  ADS  Google Scholar 

  42. Beghoul, N., Barazangi, M. & Isacks, B. L. J. geophys. Res. 98, 1997–2016 (1993).

    Article  ADS  Google Scholar 

  43. McNamara, D. E. et al. J. geophys. Res. (in the press).

  44. Chen, W.-P. & Molnar, P. J. geophys. Res. 86, 5937–5962 (1981).

    Article  ADS  Google Scholar 

  45. Roecker, S. W. et al. J. geophys. Res. (in the press).

  46. Molnar, P. Earth planet Sci. Lett. 101, 68–77 (1990).

    Article  ADS  Google Scholar 

  47. Ni, J. & Barazangi, M. Geophys. J. R. astr. Soc. 72, 665–689 (1983).

    Article  ADS  Google Scholar 

  48. Dewey, J. F. & Bird, J. M. J. geophys. Res. 75, 2625–2647 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willett , S., Beaumont, C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature 369, 642–645 (1994). https://doi.org/10.1038/369642a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369642a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing