Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RAD25 is a DMA helicase required for DNA repair and RNA polymerase II transcription

Abstract

THE RAD25 gene of Saccharomyces cerevisiae functions in nucleotide excision repair of ultraviolet-damaged DNA and is also required for cell viability1. The RAD25 protein shows remarkable homology to the protein encoded by the human nucleotide-excision-repair gene XPB (ERCC3), mutations in which cause the cancer-prone disease xeroderma pigmentosum and also Cockayne's syndrome1. Here we purify RAD25 protein from S. cerevisiae and show that it contains single-stranded DNA-dependent ATPase and DNA helicase activities. Extract from the conditional lethal mutant rad25-ts24 exhibits a thermolabile transcriptional defect which can be corrected by the addition of RAD25 protein, indicating a direct and essential role of RAD25 in RNA polymerase II transcription. The protein encoded by the rad25799am allele is defective in DNA repair but is proficient in RNA polymerase II transcription, indicating that RAD25 DNA-repair activity is separable from its transcription function. The rad25 Arg-392 encoded product, which contains a mutation in the ATP-binding motif, is defective in RNA polymerase II transcription, suggesting that the RAD25-encoded DNA helicase functions in DNA duplex opening during transcription initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prakash, S., Sung, P. & Prakash, L. A. Rev. Genet. 27, 33–70 (1993).

    Article  CAS  Google Scholar 

  2. Matson, S. W. & Kaiser-Rogers, K. A. A. Rev. Biochem. 59, 289–329 (1990).

    Article  CAS  Google Scholar 

  3. Qiu, H., Park, E., Prakash, L. & Prakash, S. Genes Dev. 7, 2161–2171 (1993).

    Article  CAS  Google Scholar 

  4. Koleske, A. J., Buratowski, S., Nonet, M. & Young, R. A. Cell 69, 883–894 (1992).

    Article  CAS  Google Scholar 

  5. Woontner, M., Wade, P. A., Bonner, J. & Jaehning, J. A. Molec. cell. Biol. 11, 4555–4560 (1991).

    Article  CAS  Google Scholar 

  6. Bunick, D., Zandomeni, R., Ackerman, S. & Wienman, R. Cell 29, 877–886 (1982).

    Article  CAS  Google Scholar 

  7. Sawadogo, M. & Roeder, R. G. J. biol. Chem. 259, 5321–5326 (1984).

    CAS  Google Scholar 

  8. Park, E. et al. Proc. natn. Acad. Sci. U.S.A. 89, 11416–11420 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Sung, P., Higgins, D., Prakash, L. & Prakash, S. EMBO J. 7, 3263–3269 (1988).

    Article  CAS  Google Scholar 

  10. Feaver, W. J., Gileadi, O., Li, Y. & Kornberg, R. D. Cell 67, 1223–1230 (1991).

    Article  CAS  Google Scholar 

  11. Conoway, R. C. & Conoway, J. W. Proc. natn. Acad. Sci. U.S.A. 86, 7356–7360 (1989).

    Article  ADS  Google Scholar 

  12. Schaeffer, L. et al. Science 260, 58–63 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Guzder, S. N. et al. Nature 367, 91–94 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Feaver, W. J. et al. Cell 75, 1379–1387 (1993).

    Article  CAS  Google Scholar 

  15. Sung, P., Prakash, L., Weber, S. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 84, 6045–6049 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Sung, P., Prakash, L., Matson, S. W. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 84, 8951–8955 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Sung, P. et al. Nature 365, 852–855 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Sung, P., Watkins, J. F., Prakash, L. & Prakash, S. J. biol. Chem. 269, 8303–8308 (1994).

    CAS  PubMed  Google Scholar 

  19. Sung, P., Reynolds, P., Prakash, L. & Prakash, S. J. biol. Chem. 268, 26391–26399 (1993).

    CAS  Google Scholar 

  20. Tomkinson, A. E. et al. Nature 362, 860–862 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Nature 366, 365–368 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Sweder, K. S. & Hanawalt, P. C. Science 262, 439 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Sweder, K. S. & Hanawalt, P. C. J. biol. Chem. 269, 1852–1857 (1994).

    CAS  Google Scholar 

  24. Sweder, K. S. & Hanawalt, P. C. Proc. natn. Acad. Sci. U.S.A. 89, 10696–10700 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Leadon, S. A. & Lawrence, D. A. J. biol. Chem. 267, 23175–23182 (1992).

    CAS  PubMed  Google Scholar 

  26. Bailly, V. et al. Proc. natn. Acad. Sci. U.S.A. 89, 8273–8277 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzder, S., Sung, P., Bailly, V. et al. RAD25 is a DMA helicase required for DNA repair and RNA polymerase II transcription. Nature 369, 578–581 (1994). https://doi.org/10.1038/369578a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369578a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing