Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytoplasmic domains of the interleukin-2 receptor β and γ chains mediate the signal for T-cell proliferation

Abstract

THE interleukin-2 receptor (IL-2R) consists of three distinct chains (α, β, γ) which bind IL-2 and generate a proliferative signal in T cells1. To define the mechanism of receptor activation, chimaeric receptors were constructed from the intracellular region of either IL-2Rβ or IL-2Rγ and the extracellular region of c-kit, a receptor tyrosine kinase that homodimerizes on binding stem cell factor (SCF) 2. We report here that binding of SCF to the β-chain chimaera induced proliferation of the pro-B-cell line BA/F3, but not T cells. But in T cells expressing both the β- and γ-chain chimaeras, SCF induced proliferation and tyrosine phosphorylation characteristic of the native IL-2R signal. Chimaeric IL-2 receptor β and γ chains constructed with the heterodimeric extracellular regions of the granulocyte–macrophage colony stimulating factor receptor (GM-CSFR) also provided the IL-2R signal. Thus, heterodimerization of the cytoplasmic domains of IL-2Rβ and -γ appears necessary and sufficient for signalling in T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taniguchi, T. & Minami, Y. Cell 73, 5–8 (1993).

    Article  CAS  Google Scholar 

  2. Lev, S., Yarden, Y. & Givol D. J. biol. Chem. 267, 15970–15977 (1992).

    CAS  Google Scholar 

  3. Murakami, M. et al. Science 260, 1808–1810 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Stahl, N. & Yancopoulos, G. D. Cell 74, 587–590 (1993).

    Article  CAS  Google Scholar 

  5. Hatakeyama, M. et al. Science 252, 1523–1528 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Horak, I. D. et al. Proc. natn. Acad. Sci. U.S.A. 88, 1996–2000 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Smith, K. A. & Cantrell, D. A. Proc. natn. Acad. Sci. U.S.A. 82, 864–868 (1985).

    Article  ADS  CAS  Google Scholar 

  8. D'Andrea, A. D. et al. Cell 58, 1023–1024 (1989).

    Article  CAS  Google Scholar 

  9. Bich-Thuy, L. T. et al. J. Immun. 139, 1550–1556 (1987).

    CAS  PubMed  Google Scholar 

  10. Siu, G., Wurster, A., Llpsick, J. S. & Hedrick, S. M. Molec. cell. Biol. 12, 1592–1604 (1992).

    Article  CAS  Google Scholar 

  11. Waldmann, T. A. J. biol. Chem. 266, 2681–2684 (1994).

    Google Scholar 

  12. Arima, N. et al. J. exp. Med. 176, 1265–1272 (1992).

    Article  CAS  Google Scholar 

  13. Linnekin, D., Evans, G., Michiel, D. & Farrar, W. L. J. biol. Chem. 267, 23993–23998 (1992).

    CAS  PubMed  Google Scholar 

  14. Asao, H. et al. J. exp. Med. 171, 637–644 (1990).

    Article  CAS  Google Scholar 

  15. Sugamura, K. et al. Lymphokine Res. 9, 539–542 (1990).

    CAS  PubMed  Google Scholar 

  16. Shanafelt, A. B., Miyajima, A., Kitamura, T. & Kastelein, R. A. EMBO J. 10, 4105–4112 (1991).

    Article  CAS  Google Scholar 

  17. Chiba, T. et al. Nature 362, 646–648 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Asao, H. et al. Proc. natn. Acad. Sci. U.S.A. 90, 4127–4131 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Kondo, M. et al. Science 262, 1874–1877 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Noguchi M. et al. Science 262, 1877–1880 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Russell, S. M. et al. Science 262, 1880–1883 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Noguchi, M. et al. Cell 73, 147–157 (1993).

    Article  CAS  Google Scholar 

  23. Sakamaki, K., Miyajima, I., Kitamura, T. & Miyajima, A. EMBO J. 11, 3541–3549 (1992).

    Article  CAS  Google Scholar 

  24. Takeshita, T. et al. Science 257, 379–382 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Ullrich, A. & Schlessinger, J. Cell 61, 203–212 (1990).

    Article  CAS  Google Scholar 

  26. Ho, S. N. et al. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  27. Gunning, P. et al. Proc. natn. Acad. Sci. U.S.A. 84, 4831–4835 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Ziegler, S. F. et al. New Biol. 3, 1242–1248 (1991).

    CAS  PubMed  Google Scholar 

  29. Beckmann, M. P. et al. J. Immun. 144, 4212–4217 (1990).

    CAS  PubMed  Google Scholar 

  30. Moreau, J. L. et al. Eur. J. Immun. 17, 929–935 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, B., Lord, J. & Greenberg, P. Cytoplasmic domains of the interleukin-2 receptor β and γ chains mediate the signal for T-cell proliferation. Nature 369, 333–336 (1994). https://doi.org/10.1038/369333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369333a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing