Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-organized growth of strained InGaAs quantum disks

Abstract

LATERAL confinement of electrons or excitons in low-dimensional semiconductor structures (quantum ‘wires’ and ‘boxes’) leads to new electronic properties1, which can be used to improve the performance of optical devices such as semiconductor lasers and nonlinear optical switches2–4. Several state-of-the-art technologies have been applied to fabricate these quantum structures: lateral structure can be defined using high-resolution lithography combined with dry etching5,6, or by crystal growth on masked substrates7,8. Unfortunately, such processes inevitably result in a deterioration of the crystal quality. But recent reports9,10 of self-organized formation of quantum-wire semiconductor structures have attracted considerable interest as a means of overcoming these difficulties. We describe here the self-organized formation of box-like microstructures during the interrupted epitaxial growth of strained InGaAs/AlGaAs multilayer structures on (311)B gallium arsenide substrates. We find that the InGaAs layers organize spontaneously into homogeneous nanoscale disks embedded in an AlGaAs matrix. This phenomenon appears to arise from a complex interplay between the lattice strain, surface energy and surface migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bauer, G., Heinrich, H. & Kuchar, F. (eds) New Concepts for Low-Dimensional Electronic Systems (Springer, Heidelberg, 1992).

    Google Scholar 

  2. Weisbuch, C. J. Cryst. Growth 127, 742–751 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Arakawa, Y. & Sakaki, H. Appl. Phys. Lett. 40, 939–941 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Arakawa, Y., Vahala, K. & Yariv, A. Appl. Phys. Lett. 45, 950–952 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Kash, K., Scherer, A., Worlock, J. M., Craighead, H. G. & Tamargo, M. C. Appl. Phys. Lett. 49, 1043–1045 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Kohl, M., Heitmann, D., Grambow, P. Ploog, K. Phys. Rev. B41, 12338–12341 (1990).

    Article  CAS  Google Scholar 

  7. Fukui, T., Saito, H., Kasu, M. & Ando, S. J. Cryst. Growth 124, 493–496 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Nishioka, M., Tsukamoto, S., Nagamune, Y., Tanaka, T. & Arakawa, Y. J. Cryst. Growth 124, 502–506 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Nötzel, R., Ledentsov, N., Däweritz, L., Hohenstein, M. & Ploog, K. Phys. Rev. Lett. 67, 3812–3815 (1991).

    Article  ADS  Google Scholar 

  10. Mirin, R. et al. J. Cryst. Gowth 127, 881–886 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Jesson, D. E., Pennycook, S. J., Baribeau, J. M. & Houghton, D. C. Phys. Rev. Lett. 71, 1744–1747 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Guha, S., Madhukar, A. & Rajkumar, K. C. Appl. Phys. Lett. 57, 2110–2112 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Grandjean, N. & Massies, J. J. Cryst. Growth 134, 51–62 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Gilmer, G. H. & Grabow, M. H. J. Metals 39–6, 19–23 (1987).

    Google Scholar 

  15. Chadi, D. J. Phys. Rev. B29, 785–792 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Snyder, C. W., Orr, B. G., Kessler, D. & Sander, L. M. Phys. Rev. Lett. 66, 3032–3035 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Nötzel, R., Däweritz, L. & Ploog, K. Phys. Rev. B46, 4736–4741 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nötzel, R., Temmyo, J. & Tamamura, T. Self-organized growth of strained InGaAs quantum disks. Nature 369, 131–133 (1994). https://doi.org/10.1038/369131a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369131a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing