Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An electride with a large six-electron ring

Abstract

ELECTRIDES are crystalline salts that contain complexed alkali metal cations whose charge is balanced by trapped electrons1. Theory2,3 and experiment4,5 indicate that the excess electron distribution is concentrated in cavities and channels formed by close-packing of the large complexed cations. Thus electrides might serve as models of a confined electron gas. Only three electrides have been structurally characterized previously6–8. Here we report the structure of a new electride, [Cs + (15C5) (18C6).e-]6.(18C6), where 15C5 and 18C6 represent crown ethers with five and six oxygen atoms respectively. The unit cell has threefold symmetry, with a central 18C6 molecule surrounded by six Cs+ cations, each sandwiched between a 15C5 and 18C6 molecule. The six electrons released from the Cs/crown ether interaction seem to be trapped in six cavities which form a puckered ring, three above and three below the plane of the central 18C6 molecule. The ground state is diamagnetic. This ring-like distribution of electrons contrasts with the chain-like connections between electron cavities observed in other electrides6–8. Polycrystalline samples of this new electride have an electrical conductivity about a million times greater than those of the electrides Cs+ (15C5)2.e- and Cs+ (18C6)2.e-. The size, shape and connectivity of the electron-containing cavities and channels evidently exert a critical influence on the properties of electrides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wagner, M. J. & Dye, J. L. A. Rev. Mater. Sci. 23, 223–253 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Singh, D. J., Krakauer, H., Haas, C. & Pickett, W. E. Nature 365, 39–42 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Dye, J. L. Nature 365, 10–11 (1993).

    Article  ADS  Google Scholar 

  4. Dye, J. L. Science 247, 663–668 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Shin, D. H., Dye, J. L., Budil, D. E., Earle, K. A. & Freed, J. H. J. phys. Chem. 97, 1213–1219 (1993).

    Article  CAS  Google Scholar 

  6. Dawes, S. B., Ward, D. L., Huang, R. H. & Dye, J. L. J. Am. chem. Soc. 108, 3534–3535 (1986).

    Article  CAS  Google Scholar 

  7. Dawes, S. B., Eglin, J. L., Moeggenborg, K. J., Kim, J. & Dye, J. L. J. Am. chem. Soc. 113, 1605–1609 (1991).

    Article  CAS  Google Scholar 

  8. Huang, R. H., Faber, M. K., Moeggenborg, K. J., Ward, D. L. & Dye, J. L. Nature 331, 599–601 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Ward, D. L., Huang, R. H. & Dye, J. L. Acta crystallogr. C44, 1374–1376 (1988).

    CAS  Google Scholar 

  10. Wagner, M. J., Huang, R. H. & Dye, J. L. J. phys. Chem. 97, 3982–3984 (1993).

    Article  CAS  Google Scholar 

  11. Bulacvskii, L. N., Zvarykina, A. V., Karimov, Y. S., Lyubovskii, R. B. & Shchegolev, I. F. Soviet Phys. JETP 35, 384–389 (1972).

    ADS  Google Scholar 

  12. Soos, Z. G. & Bondeson, S. R. Molec. Cryst. liq. Cryst. 85, 19–31 (1982).

    Article  Google Scholar 

  13. Moeggenborg, K. J., Papaioannou, J. & Dye, J. L. Chem. Mater. 3, 514–520 (1991).

    Article  CAS  Google Scholar 

  14. Efras, A. L. & Shklovskii, B. I. J. Phys. C8, L49–L51 (1975).

    ADS  Google Scholar 

  15. Brenig, W., Döhler, G. H. & Heyszenau, H. Phil. Mag. 27, 1093–1103 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, M., Huang, R., Eglin, J. et al. An electride with a large six-electron ring. Nature 368, 726–729 (1994). https://doi.org/10.1038/368726a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368726a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing