Abstract
THE existence of sympatric speciation—that populations diverge into species in the absence of physical or ecological barriers—is controversial1–6. The East African Great Lakes harbour hundreds of cichlid species representing only a few monophyletic lineages7,8, although palaeolimnological evidence9–11 and local restrictions on species distribution12 suggest that speciation in these lakes could have been allopatric13,14. The case for sympatry in restricted areas of Lakes Malawi and Tanganyika is stronger15–17 but not unassailable. A better case might be made for cichlid species flocks in small, ecologically monotonous crater lakes. Here we present a mitochondrial DNA analysis of cichlid species flocks endemic to two such lakes in Cameroon. The results suggest that the flocks in each lake are monophyletic: the implication being that each lake was colonized once only, the size and shape of each lake being such that subsequent diversification would have been sympatric.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Diversification Rate is Associated with Rate of Molecular Evolution in Ray-Finned Fish (Actinopterygii)
Journal of Molecular Evolution Open Access 09 March 2022
-
A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya
Hydrobiologia Open Access 18 August 2020
-
East African cichlid lineages (Teleostei: Cichlidae) might be older than their ancient host lakes: new divergence estimates for the east African cichlid radiation
BMC Evolutionary Biology Open Access 25 April 2019
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Futuyma, D. J. & Mayer, G. C. Sysl. Zool. 29, 254–271 (1980).
Grant, P. R. & Grant, B. R. in Speciation and its Consequences (eds Otte, D. & Endler, J. A.) 433–457 (Sinauer, Sunderland, MA, 1989).
Felsenstein, J. Evolution 35, 124–138 (1981).
Coyne, J. A. Nature 355, 511–515 (1992).
Otte, D, & Endler, J. A. (eds) Speciation and its Consequences (Sinauer, Sunderland, MA, (1989).
Kondrashow, A. S. & Mina, V. M. Biol. J. Linn. Soc. 27, 201–223 (1986).
Meyer, A., Kocher, T. D., Basasibwaki, P. & Wilson, A. C. Nature 347, 550–553 (1990).
Nishida, M. Experientia 47, 974–979 (1991).
Livingstone, D. A. A. Rev. Ecol. Syst. 6, 249–280 (1975).
Owen, R. B. et al. Proc. R. Soc. B 240, 519–553 (1990).
Tiercelin, J.-J. & Mondeguer, A. in Lake Tanganyika and its Life (ed. Coulter, G. W.) 7–48 (Oxford Univ. Press, London, 1991).
Ribbink, A. J., March, B. A., Marsh, A. C., Ribbink, B. J. & Sharp, B. J. S. Afr. J. Zool. 18, 1–180 (1983).
Rice, W. R. & Salt, G. W. Evolution 44, 1140–1152 (1990).
Mayr, E. in Evolution of Fish Species Flocks (eds Echelle, A. A. & Kornfield, I.) 3–11 (Univ. of Maine Press, Orono, 1984).
McKaye, K. R., Kocher, T., Reinthal, P. & Kornfield, I. Zool. J. Linn. Soc. 76, 91–96 (1982).
McKaye, K. R., Kocher, T., Reinthal, P., Harrison, R. & Kornfield, I. Evolution 38, 215–219 (1984).
Sturmbauer, C. & Meyer, A. Nature 358, 578–581 (1992).
Trewavas, E., Green, J. & Corbet, S. A. J. Zool., Lond. 167, 41–95 (1972).
Stiassny, M., Schliewen, U. K. & Dominey, W. Ichthyol. exp. Freshwaters 3, 311–346 (1992).
Dominey, W. & Snyder, A. M. Env. Biol. Fish. 22, 155–160 (1988).
Greenwood, P. H. Bull. Brit. Mus. Nat. Hist. (Zool.) 53, 139–203 (1987).
Thys van den Audenaerde, D. F. Rev. Zool. Bot, Afr. 82, 285–300 (1970).
Kling, G. W. thesis, Duke Univ., Princeton (1987).
Maynard Smith, J. Am. Nat. 100, 637–650 (1966).
Pimm, W. L. J. Linn. Soc. 11, 131–139 (1979).
Seger, J. in Evolution, Essays in Honour of John Maynard Smith (eds Greenwood, P. J., Harvey, P. H. & Slatkin, M.) 43–53 (Cambridge Univ. Press, UK, 1985).
Udovic, D. Am. Nat. 116, 621–641 (1980).
Rice, W. R. Evol. Ecol. 1, 301–314 (1987).
McKaye, K. R. Env. Biol. Fish. 5, 75–78 (1980).
Meyer, A. Biol. J. Linn. Soc. 39, 279–299 (1990).
Kling, G. W. Limnol. Oceanogr. 33, 27–40 (1988).
Hassert, K. Z. Ges. Erdk. Berl. 1912, 7–41, 135–144, 203–216 (1912).
Trewavas, E. Bull. Brit. Mus. Nat. Hist. (Zool.) 26, 331–419 (1984).
Teugels, G., Reid, G. & King, R. K. Ann. Mus. Roy. Afr. Centr., Sci. Zool. 266, 1–132 (1992).
Pääbo, S., Gifford, J. A. & Wilson, A. C. Nucleic Acids Res. 16, 9775–9787 (1988).
Thomas, R. H., Schaffner, W., Wilson, A. C. & Pääbo, S. Nature 340, 465–467 (1989).
Kocher, T. D. et al. Proc. natn. Acad. Sci. U.S.A. 86, 6196–6200 (1989).
Bachmann, B., Lücke, W. & Hunsmann, G. Nucl. Acids Res. 5, 1309 (1990).
Felsenstein, J. P. Version 3.3 (Univ. Washington, Seattle, 1990).
Felsenstein, J. Evolution 39, 783–791 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schliewen, U., Tautz, D. & Pääbo, S. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368, 629–632 (1994). https://doi.org/10.1038/368629a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/368629a0
This article is cited by
-
Diversification Rate is Associated with Rate of Molecular Evolution in Ray-Finned Fish (Actinopterygii)
Journal of Molecular Evolution (2022)
-
Preface: advances in cichlid research IV: behavior, ecology, and evolutionary biology
Hydrobiologia (2021)
-
A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya
Hydrobiologia (2021)
-
East African cichlid lineages (Teleostei: Cichlidae) might be older than their ancient host lakes: new divergence estimates for the east African cichlid radiation
BMC Evolutionary Biology (2019)
-
The origin and future of an endangered crater lake endemic; phylogeography and ecology of Oreochromis hunteri and its invasive relatives
Hydrobiologia (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.