Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High resolution of human evolutionary trees with polymorphic microsatellites

Abstract

GENETIC variation at hypervariable loci is being used extensively for linkage analysis1 and individual identification2, and may be useful for inter-population studies2–5. Here we show that polymorphic microsatellites (primarily CA repeats) allow trees of human individuals to be constructed that reflect their geographic origin with remarkable accuracy. This is achieved by the analysis of a large number of loci for each individual, in spite of the small variations in allele frequencies existing between populations6,7. Reliable evolutionary relationships could also be established in comparisons among human populations but not among great ape species, probably because of constraints on allele length variation. Among human populations, diversity of microsatellites is highest in Africa, which is in contrast to other nuclear markers and supports the hypothesis of an African origin for humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Weissenbach, J. et al. Nature 359, 794–801 (1992).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Pena, S. D. J., Chakraborty, R., Epplen, J. T. & Jeffreys, A. J. (eds) DNA Fingerprinting: State of the Science (Birkhauser, Basel, 1993).

    Google Scholar 

  3. 3

    Gilbert, D. A., Lehman, N., O'Brien, S. J. & Wayne, R. K. Nature 344, 764–767 (1990).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T. & Chakraborty, R. Genomics 12, 241–253 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Chakraborty, R., Deka, R., Jin, L. & Ferrell, R. E. Am. J. hum. Biol. 4, 387–397 (1992).

    Article  Google Scholar 

  6. 6

    Smouse, P. E., Spielman, R. S. & Park, M. H. Am. Nat. 119, 445–463 (1982).

    Article  Google Scholar 

  7. 7

    Mitton, J. B. Am. Nat. 111, 203–212 (1977).

    Article  Google Scholar 

  8. 8

    Cann, R. L., Stoneking, M. & Wilson, A. C. Nature 325, 31–36 (1987).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. Science 253, 1503–1507 (1991).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Lewontin, R. Evol. Biol. 6, 381–398 (1972).

    Google Scholar 

  11. 11

    Nei, M. & Roychoudhury, A. Science 177, 434–436 (1972).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Cavalli-Sforza, L. L., Piazza, A., Menozzi, P. & Mountain, J. Proc. natn. Acad. Sci. U.S.A. 85, 6002–6006 (1988).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bowcock, A. M. et al. Proc. natn. Acad. Sci. U.S.A. 88, 839–843 (1991).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Nei, M. & Roychoudhury, A. Molec. Biol. Evol. 10, 927–943 (1993).

    CAS  PubMed  Google Scholar 

  15. 15

    Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. History and Geography of Human Genes (Princeton Univ. Press, Princeton, in the press).

  16. 16

    Karlin, S. A First Course in Stochastic Processes (Academic, New York, 1969).

    Google Scholar 

  17. 17

    Walsh, J. B. Genetics 115, 553–567 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Tachida, H. & Iizuka, M. Genetics 131, 471–478 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Templeton, A. R. Am. Anthr. 95, 51–72 (1993).

    Article  Google Scholar 

  20. 20

    Barbujani, G. & Sokal, R. R. Proc. natn. Acad. Sci. U.S.A. 87, 1816–1819 (1990).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Zei, G. et al. Ann. hum. Genet. 57, 123–140 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. Science 259, 639–646 (1993).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bowcock, A. M. et al. Gene Geog. 5, 151–173 (1991).

    CAS  Google Scholar 

  24. 24

    Horai, S. et al. Molec. Biol. Evol. 10, 23–47 (1993).

    CAS  PubMed  Google Scholar 

  25. 25

    Saitou, N. & Nei, M. Molec. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Bowcock, A. et al. Genomics 15, 376–386 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Felsenstein, J. PHYLIP (Phylogeny Inference Package) Version 3.5c (Department of Genetics, Univ. Washington, Seattle, 1993).

    Google Scholar 

  28. 28

    Cavalli-Sforza, L. L. & Edwards, A. W. F. Evolution 32, 550–570 (1967).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bowcock, A., Ruiz-Linares, A., Tomfohrde, J. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994). https://doi.org/10.1038/368455a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing