Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geomagnetic palaeointensities during the Cretaceous normal superchron measured using submarine basaltic glass

Abstract

High-quality palaeointensity data have been obtained from Thellier-Thellier experiments on recent and Cretaceous submarine basaltic glasses. Whereas the recent samples faithfully yield today's geomagnetic intensity at the site, the palaeointensities for the beginning and end of the Cretaceous normal superchron are only 45% and 25%, respectively, of today's value. The data thus extend the 'Mesozoic dipole low' into the Cretaceous superchron, and confirm that submarine basaltic glass is an excellent material for palaeointensity studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cox, A. V. J. geophys. Res. 73, 3247–3260 (1968).

    Article  ADS  Google Scholar 

  2. Loper, D. E. Geophys. Res. Lett. 19, 25–28 (1992).

    Article  ADS  Google Scholar 

  3. Merrill, R. T. & McFadden, P. L. Science 248, 345–350 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Larson, R. L. & Olson, P. Earth planet. Sci. Lett. 107, 437–447 (1991).

    Article  ADS  Google Scholar 

  5. Loper, D. E. & McCartney, K. Geophys. Res. Lett. 13, 1525–1528 (1986).

    Article  ADS  Google Scholar 

  6. Harland, W. B. et al. A Geologic Time Scale (Cambridge Univ. Press, 1989).

    Google Scholar 

  7. Courtillot, V. & Besse, J. Science 237, 1140–1147 (1987).

    Article  ADS  CAS  Google Scholar 

  8. McFadden, P. L. & Merrill, R. T. Physics Earth planet. Inter. 43, 22–33 (1986).

    Article  ADS  Google Scholar 

  9. Prévot, M., Derder, M. E. M., McWilliams, M. & Thompson, J. Earth planet. Sci. Lett. 97, 129–139 (1990).

    Article  ADS  Google Scholar 

  10. Bol'shakov, A. S., Solodovnikov, G. M. & Vechfinskly, V. S. Izvestiya Earth Physics 14, 904–910 (1978).

    Google Scholar 

  11. Sherwood, G., Shaw, J., Baer, G. & Mallik, S. B. J. Geomagn. Geoelect. 45, 339–360 (1993).

    Article  ADS  Google Scholar 

  12. Thellier, E. & Thellier, O. Ann. Geophys. 15, 285–378 (1959).

    Google Scholar 

  13. Pick, T. & Tauxe, L. J. geophys. Res. 98, 17949–17964 (1993).

    Article  ADS  Google Scholar 

  14. Nagata, T., Arai, Y. & Momose, K. J. geophys. Res. 68, 5277–5281 (1963).

    Article  ADS  Google Scholar 

  15. Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J. & Pringle, M., Proc. ODP Sci. Res. 130, 3–22 (1993).

    CAS  Google Scholar 

  16. Ozima, M., Kaneoka, I. & Yanagisawa, M. Init. Rep. DSDP Leg 51–53, 1127–1128 (1980).

    Google Scholar 

  17. Kent, D. V. & Gradstein, F. M. Geol. Soc. Am. Bull. 96, 1419–1424 (1985).

    Article  ADS  Google Scholar 

  18. Cande, S. C. & Kent, D. V. J. geophys. Res. 97, 13917–13951 (1992).

    Article  ADS  Google Scholar 

  19. Harland, W. B. et al. A Geologic Time Scale (Cambridge Univ. Press, 1982).

    Google Scholar 

  20. Bleil, U. & Petersen, N. Nature 301, 384–388 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Grammé, S., Mankinen, E. A., Marshall, M. & Coe, R. S. J. Geophys. Res. 84, 3553–3575 (1979).

    Article  ADS  Google Scholar 

  22. Prévot, M., Mankinen, E. A., Grommé, S. & Lecaille, A. J. geophys. Res. 88, 2316–2326 (1983).

    Article  ADS  Google Scholar 

  23. Levi, S. Init. Rep. DSDP Leg 51–53, 1363–1378 (1980).

    Google Scholar 

  24. Tarduno, J. A. et al. Science 254, 399–403 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Van der Voo, R. Rev. geophys. 28, 167–206 (1990).

    Article  ADS  Google Scholar 

  26. Wilson, D. S. Init. Rep. DSDP Leg 78, 583–592 (1984).

    Google Scholar 

  27. Sayanagi, K. & Tamaki, K. Geophys. Res. Lett. 12, 2369–2372 (1992).

    Article  ADS  Google Scholar 

  28. Olson, P. & Lee Hagee, V. J. geophys. Res. 95, 4609–4620 (1990).

    Article  ADS  Google Scholar 

  29. Opdyke, N. D. Rev. Geophys. Space Phys. 10, 213–249 (1972).

    Article  ADS  Google Scholar 

  30. Robinson, P. T., Flower, M. F. J., Swanson, D. A. & Staudigel, H. Init. Rep. DSDP Leg 53, 1535–1556 (1980).

    Google Scholar 

  31. Mayer, H. & Tarduno, J. A. Proc. ODP Sci. Res. 130, 51–59 (1993).

    Google Scholar 

  32. Natland, J. H., Tarney, J., Marsh, N. G., Melson, W. G. & O'Hearn, T. Init. Rep. DSDP Leg 78, 393–400 (1984).

    Google Scholar 

  33. Gubbins, D. Nature 326, 167–169 (1987).

    Article  ADS  Google Scholar 

  34. Wohlfarth, E. P. J. Appl. Phys. 29, 595–596 (1958).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pick, T., Tauxe, L. Geomagnetic palaeointensities during the Cretaceous normal superchron measured using submarine basaltic glass. Nature 366, 238–242 (1993). https://doi.org/10.1038/366238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366238a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing