Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transposition of group II intron al1 in yeast and invasion of mitochondrial genes at new locations

Abstract

INTRON mobility at the RNA level1& ndash;8 by splicing reversal at allelic (homing) and non-allelic locations (transposition) has been reported in vitro9& ndash;12. In the living cell, however, only intron homing by unidirectional gene conversion has been described5,6,13,14. Supposing that intron insertions at non-allelic sites might occur in vivo, we speculated that group II splice-site-associated macro-deletions15& ndash;18 in fungal mitochondrial DNA might result from group II intron transposition to new locations followed by recombination. We used polymerase chain reaction techniques to detect this critical, infrequent intermediate in mtDNA populations. Here we report on group II intron al1 transposition to non-allelic, splicing-compatible locations within the cox1 gene of yeast mtDNA. The identified integration sites are preceded by motifs similar to the upstream exon A1. Sequences flanking intron al1 are not co-converted to the insertion sites and cis- and trans-acting mutations within al1 reduce intron mobility below detection levels. These findings suggest the involvement of an RNA intermediate in group II intron transposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilbert, W. Nature 319, 618 (1986).

    Article  ADS  Google Scholar 

  2. Rogers, J. H. Trends Genet. 5, 213–216 (1989).

    Article  CAS  Google Scholar 

  3. Lambowitz, A. M. Cell 56, 323–326 (1989).

    Article  CAS  Google Scholar 

  4. Cavalier-Smith, T. Trends Genet. 7, 145–148 (1991).

    Article  CAS  Google Scholar 

  5. Perlman, P. S. & Butow, R. A. Science 246, 1106–1109 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Dujon, B. Gene 82, 91–114 (1989).

    Article  CAS  Google Scholar 

  7. Sharp, P. A. Cell 42, 397–400 (1985).

    Article  CAS  Google Scholar 

  8. Kruger, K. et al. Cell 31, 147–157 (1982).

    Article  CAS  Google Scholar 

  9. Woodson, S. A. & Cech, T. R. Cell 57, 335–345 (1989).

    Article  CAS  Google Scholar 

  10. Augustin, S., Mueller, M. W. & Schweyen, R. J. Nature 343, 383–386 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Mörl, M. & Schmelzer, C. Cell 60, 629–636 (1990).

    Article  Google Scholar 

  12. Mueller, M. W., Stocker, P., Hetzer, M. & Schweyen, R. J. J. molec. Biol. 222, 145–154 (1991).

    Article  CAS  Google Scholar 

  13. Meunier, B., Tian, G.-L., Macadre, C., Slonimski, P. P. & Lazowska, J. in Structure Function and Biogenesis of Energy Transfer Systems (eds Quagliariello, E., Papa, S., Palmieri, F. & Saccone, C.) 169–174 (Elsevier Biomedical, Amsterdam, 1990).

    Google Scholar 

  14. Levra-Julitte, E., Boulet, A., Seraphin, B., Simon, M. & Faye, G. Molec. Gen. Genet. 217, 168–171 (1989).

    Article  Google Scholar 

  15. Osiewacz, H. D. & Esser, K. Curr. Genet. 8, 299–305 (1984).

    Article  CAS  Google Scholar 

  16. Ahne, A. et al. J. molec. Biol. 202, 725–734 (1989).

    Article  Google Scholar 

  17. Belcour, L., Begel, O. & Picard, M. Proc. natn. Acad. Sci. U.S.A. 88, 3579–3583 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Weiller, G. F. thesis, Univ. München (1986).

  19. Kennell, J. C., Moran, J. V., Perlman, P. S., Butow, R. A. & Lambowitz, A. M. Cell 73, 133–146 (1993).

    Article  CAS  Google Scholar 

  20. Michel, F., Umesono, K. & Ozeki, H. Gene 82, 5–30 (1989).

    Article  CAS  Google Scholar 

  21. Gargouri, A., Lazowska, J. & Slonimski, P. P. in Mitochondria (eds Schweyen R. J. et al.) 259–268 (Walter de Gruyter, Berlin, 1983).

    Google Scholar 

  22. Saldanha, R., Mohr, G., Belfort, M. & Lambowitz, A. M. FASEB 7, 15–24 (1993).

    Article  CAS  Google Scholar 

  23. Jacquier, A. & Michel, F. Cell 50, 17–29 (1987).

    Article  CAS  Google Scholar 

  24. Carignani, G. et al. Cell 35, 733–742 (1983).

    Article  CAS  Google Scholar 

  25. Wenzlau, J. M., Saldanha, R. J., Butow, R. A. & Perlman, P. S. Cell 56, 421–430 (1989).

    Article  CAS  Google Scholar 

  26. Quirk, S. M., Bell-Pedersen, D. & Belfort, M. Cell 56, 455–465 (1989).

    Article  CAS  Google Scholar 

  27. Copertino, D. W. & Hallick, R. B. EMBO J. 10, 433–442 (1991).

    Article  CAS  Google Scholar 

  28. Doolittle, W. F. Trends Genet. 1, 64–65 (1985).

    Article  CAS  Google Scholar 

  29. Defontaine, A., Lecocq, F. M. & Hallet, J. N. Nucleic Acids Res. 19, 185 (1991).

    Article  CAS  Google Scholar 

  30. Hultman, T., Staahl, S., Hornes, E. & Uhlen, M. Nucleic Acids Res. 17, 4937 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, M., Allmaier, M., Eskes, R. et al. Transposition of group II intron al1 in yeast and invasion of mitochondrial genes at new locations. Nature 366, 174–176 (1993). https://doi.org/10.1038/366174a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366174a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing