Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor

Abstract

SPECIFIC responses to blue light are found throughout the biological kingdom. These responses& mdash;which in higher plants include photo-tropism, inhibition of hypocotyl elongation, and stomatal opening1& mdash;are in many cases thought to be mediated by flavin-type photoreceptors2. But no such blue-light photoreceptor has yet been identified or isolated, although blue-light responses in plants were reported by Darwin over a century ago3, long before the discovery of the now relatively well characterized red/far-red light photoreceptor, phytochrome4. Here we describe the isolation of a gene corresponding to the HY4 locus of Arabidopsis thaliana. The hy4 mutant5 is one of several mutants6 that are selectively insensitive to blue light during the blue-light-dependent inhibition of hypocotyl elongation response, which suggests that they lack an essential component of the cryptochrome-associated light-sensing pathway. The HY4 gene, isolated by gene tagging, was shown to encode a protein with significant homology to microbial DNA photolyases. As photolyases are a rare class of flavoprotein that catalyse blue-light-dependent reactions7, the protein encoded by HY4 has a structure consistent with that of a flavin-type blue-light photoreceptor.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Kaufman, L. S. Plant Physiol. 102, 333–337 (1993).

    CAS  Article  Google Scholar 

  2. Galland, P. & Senger, H. in Photoreceptor Evolution and Function (ed. Holmes, M. G.) 65–124 (Academic, London, 1991).

    Google Scholar 

  3. Darwin, C. The Power of Movement in Plants (Appleton, New York, 1881).

    Google Scholar 

  4. Quail, P. H. A. Rev. Genet. 25, 389–409 (1991).

    CAS  Article  Google Scholar 

  5. Koornneef, M., Rolff, E. & Spruit, C. J. P. Z. Pflanzenphysiol. Bd. 100, 147–160 (1980).

    Article  Google Scholar 

  6. Liscum, E. & Hangarter, R. Plant Cell 3, 685–694 (1991).

    Article  Google Scholar 

  7. Sancar, G. B. Mut. Res. 236, 147–160 (1990).

    CAS  Article  Google Scholar 

  8. Feldmann, K. Plant J. 1, 71–82 (1991).

    CAS  Article  Google Scholar 

  9. Schindler, U., Menkens, A. E., Beckmann, H., Ecker, J. R. & Cashmore, A. R. EMBO J. 11, 1261–1273 (1992).

    CAS  Article  Google Scholar 

  10. Malhotra, K., Baer, M., Li, Y. F., Sancar, G. B. & Sancar, A. J. biol. Chem. 267, 2909–2914 (1992).

    CAS  PubMed  Google Scholar 

  11. Yamamoto, K. Molec. gen. Genet. 232, 1–6 (1992).

    CAS  Article  Google Scholar 

  12. Li, Y. F. & Sancar, A. Biochemistry 29, 5698–5706 (1990).

    CAS  Article  Google Scholar 

  13. Kobayashi, T., Takao, M., Oikawa, A. & Yasui, A. Nucleic Acids Res. 17, 4731–4744 (1989).

    CAS  Article  Google Scholar 

  14. Yajima, H., Inoue, H., Oikawa, A. & Yasui, A. Nucleic Acids Res. 19, 5359–5362 (1991).

    CAS  Article  Google Scholar 

  15. Pang, Q. & Hays, J. B. Plant Physiol. 95, 536–543 (1991).

    CAS  Article  Google Scholar 

  16. Ruiz-Apazo, N. & Nadal-Ginard, B. J. biol. Chem. 262, 4755–4765 (1987).

    Google Scholar 

  17. Reymond, P., Short, T. W., Briggs, W. R. & Poff, K. L. Proc. natn. Acad. Sci. U.S.A. 89, 4718–4721 (1992).

    ADS  CAS  Article  Google Scholar 

  18. Murashige, T. & Skoog, F. Physiol. Plant 15, 473–476 (1962).

    CAS  Article  Google Scholar 

  19. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1982).

    Google Scholar 

  20. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene Wiley-Interscience, 1989).

    Google Scholar 

  21. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    ADS  CAS  Article  Google Scholar 

  22. Yasuhira, S. & Yasui, A. J. biol. Chem. 267, 25644–25647 (1992).

    CAS  PubMed  Google Scholar 

  23. Higgins, D. G. & Sharp, P. M. CABIOS 5, 151–153 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmad, M., Cashmore, A. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162–166 (1993). https://doi.org/10.1038/366162a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366162a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing