Letter | Published:

Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces

Naturevolume 366pages141143 (1993) | Download Citation



THE formation of nanometre-scale surface structures by atomic manipulation with the scanning tunnelling microscope has opened up opportunities for creating new metastable states of matter atom by atom1. The technique allows the fabrication of arbitrary structures, but its application may be limited by considerations of speed, as only one nanostructure can be built at a time. Here we describe the simultaneous formation of many densely packed nanostructures of various morphologies using diffusion-controlled aggregation on surfaces. By exploiting the dependence of the mobility of adsorbed atoms on substrate crystal face and temperature, we are able to grow linear, two-dimensional or tenuous fractal aggregates of nanometre dimensions. The high number density (1011& minus;1014 cm& minus;2) of these structures means that their physical and chemical properties can be easily measured with conventional surface spectroscopies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Eigler, D. M. & Schweizer, E. K. Nature 344, 524–526 (1990).

  2. 2

    Kern, R. in Interfacial Aspects of Phase Transitions (ed. Mutaftschiev, B.) 287–312 (Reidel, Dordrecht, 1982).

  3. 3

    Witten, T. A. & Sander, L. M. Phys. Rev. B27, 5686–5697 (1983).

  4. 4

    Hwang, R. Q., Schröder, J., Günther, C. & Behm, R. J. Phys. Rev. Lett. 67, 3279–3282 (1991).

  5. 5

    Roeder, H., Brune, H., Bucher, J. P. & Kern, K. Surf. Sci. (in the press).

  6. 6

    Venables, J. A., Spiller, G. D. T. & Hanbücken, M. Rep. Prog. Phys. 47, 399–459 (1984).

  7. 7

    Ayrault, G. & Ehrlich, G. J. Chem. Phys. 60, 281–294 (1974).

  8. 8

    Michely, Th. & Comsa, G. Surf. Sci. 256, 217–226 (1991).

  9. 9

    Jena, P., Khanna, S. N., Rao, B. K. (eds) Physics and Chemistry of Finite Systems: From Clusters to Crystals (Kluwer, Dordrecht, 1992).

  10. 10

    Massobrio, C. & Blandin, Ph. Phys. Rev. B47, 13687–13694 (1993).

  11. 11

    Solyom, J. Adv. Phys. 28, 201–303 (1979).

  12. 12

    Bonzel, H. in Diffusion in Metals and Alloys (ed. Mehrer, H.) Ch. 13 (Springer, Berlin, 1992).

  13. 13

    Bucher, J. P., Hahn, E., Fernandez, P., Massobrio, C. & Kern, K. Phys. Rev. Lett. (submitted).

  14. 14

    Tsong, T. T., Liu, J. & Wu, C. W. in Physics and Chemistry of Finite Systems: From Clusters, to Crystals (eds Jena, P et al.) 1039–1045 (Kluwer, Dordrecht, 1992).

  15. 15

    Basset, D. W. Thin Solid Films 48, 237–249 (1978).

  16. 16

    Fink, H. W. & Ehrlich, G. Surf. Sci. 110, L611–L614 (1981).

  17. 17

    Schwoebel, P. R. & Kellog, G. L. Phys. Rev. Lett. 61, 578–581 (1988).

  18. 18

    Wright, A. F., Daw, M. S. & Fong, C. Y. Phys. Rev. B42, 9409–9419 (1990).

  19. 19

    Fernandez, P. & Massobrio, C. Surf. Sci. (submitted).

Download references

Author information


  1. Institut de Physique Exp& eacute;rimentale, EPF Lausanne, CH-1015, Lausanne, Switzerland

    • Holger Röder
    • , Elmar Hahn
    • , Harald Brune
    • , Jean-Pierre Bucher
    •  & Klaus Kern


  1. Search for Holger Röder in:

  2. Search for Elmar Hahn in:

  3. Search for Harald Brune in:

  4. Search for Jean-Pierre Bucher in:

  5. Search for Klaus Kern in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.