Letter | Published:

Effect of a lowered water table on nitrous oxide fluxes from northern peatlands

Naturevolume 366pages5153 (1993) | Download Citation

Subjects

Abstract

NORTHERN peatlands contain 20–30% of the total organic nitrogen and carbon in the world's soils1,2, and thus they apparently have the potential to exert a significant influence on the global atmospheric budget of the greenhouse gases carbon dioxide, methane and nitrous oxide (N2O). In the drier, warmer summer conditions predicted at high latitudes by some climate models3,4 as a result of greenhouse-gas forcing, northern peatlands would become drier, increasing the rate of mineralization of organic matter1,5 and of the microbial processes that produce N2O. These regions might therefore be expected to exert a strong feedback on climate. But whereas methane emissions have been well studied6,7, little is known about the effect on N2O fluxes of changes in the level of peatland water tables. Here we present a comparison of present-day N2O fluxes from virgin peatlands in Finland with those from sites in the same regions that were drained by ditching 30 and 50 years ago. The lowered water table had no effect on N2O emissions from nutrient-poor peat but enhanced those from nutrient-rich peat. We estimate that equivalent drying caused by climate change would increase the total emissions of N2O from northern peatlands by 0.03–0.1 teragrams of nitrogen per year, which is just 0.3–1% of the present global annual emissions. Thus northern peatlands are unlikely to exert a significant climate feedback from N2O emissions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Gorham, E. Ecol. Applic. 1(2), 182–195 (1991).

  2. 2

    Sjörs, H. Int. J. Ecol. Envir. Sci. 7, 11–14 (1981).

  3. 3

    Manabe, S. & Wetherald, R. T. Science 232, 626–628 (1986).

  4. 4

    Mitchell, J. F. B. Rev. Geophys. 27, 115–139 (1989).

  5. 5

    Oechel, W. C. et al. Nature 361, 520–523 (1993).

  6. 6

    Harris, R. C., Gorham, E., Sebacher, D. I., Bartlett, K. B. & Flebbe, P. A. Nature 315, 652–654 (1985).

  7. 7

    Tyler, S. C. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (eds Rogers, J. E. & Whitman, W. B.) 7–38 (Am. Soc. for Microbiol, Washington DC, 1991).

  8. 8

    Laine, J. & Vanha-Majamaa, I. Ann. Bot. Fenn. 29, 213–233 (1992).

  9. 9

    Hemond, H. F. Ecology 64, 99–109 (1983).

  10. 10

    Rosswall, T. & Granhall, U. Ecol. Bull. (Stockholm) 30, 209–234 (1980).

  11. 11

    Williams, B. L. & Wheatley, R. E. Biol. Fertil. Soils 6, 141–147 (1988).

  12. 12

    Rangeley, A. & Knowles, R. Soil Biol. Biochem. 20, 385–391 (1988).

  13. 13

    Koerselman, W., De Caluwe, H. & Kieskamp, W. M. Biogeochemistry 8, 153–165 (1989).

  14. 14

    Amador, J. A. & Jones, R. D. Soil Biol. Biochem. 25, 793–801 (1993).

  15. 15

    Davidson, E. A. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (eds Rogers, J. E. & Whitman, W. B.) 219–235 (Am. Soc. for Microbiol., Washington DC, 1991).

  16. 16

    Matson, P. A., Gower, S. T., Volkman C., Billow, C. & Grier, C. C. Biogeochemistry 18, 101–117 (1992).

  17. 17

    Goodroad, L. L., Keeney, D. R. J. envir. Qual. 13, 448–452 (1984).

  18. 18

    Solomon, A. M. Oecologia 68, 567–579 (1986).

  19. 19

    Intergovernmental Panel on Climate Change Climate Change—the IPCC Scientific Assesment. (Cambridge Univ. Press, 1990).

  20. 20

    Roulet, N., Moore, T., Bubier, J. & Lafleur, P. Tellus 44B, 100–105 (1992).

  21. 21

    Moore, T. R & Knowles, R. Can. J. Soil Sci. 67, 77–81 (1987).

  22. 22

    Martikainen, P. J., Nykänen, H., Crill, P. & Silvola, J. Suo 43, (4–5), 237–240 (1992).

  23. 23

    Silvola, J., Välijoki, J. & Aaltonen, H. Acta for. fenn. 191, 1–32 (1985).

  24. 24

    Ruuhijärvi, R. in Ecosystems of the World 4B Mires: Swamp, Bog, Fen and Moor. Regional Studies (ed. Gore, A. J. P.) 47–67 (Elsevier, Amsterdam, 1983).

  25. 25

    Keltikangas, M., Laine, J., Puttonen, P. & Seppälä K. Acta for. fenn. 193, 1–94 (1986).

  26. 26

    Botch, M. S. & Masing, V. V. in Ecosystems of the World 4B Mires: Swamp, Bog, Fen and Moor. Regional Studies (ed. Gore, A. J. P.) 95–152 (Elsevier, Amsterdam, 1983).

  27. 27

    Hofstetter, R. H. in Ecosystems of the World 4B Mires: Swamp, Bog, Fen and Moor. Regional Studies (ed. Gore, A. J. P.) 201–244 (Elsevier, Amsterdam, 1983).

  28. 28

    Zoltai, S. C. & Pollet, F. C. in Ecosystems of the World 48 Mires: Swamp, Bog, Fen and Moor. Regional Studies (ed. Gore, A. J. P.) 245–268 (Elsevier, Amsterdam, 1983).

  29. 29

    Crill, P. M. et al. Glob Biogeochem. Cycles 2, 299–327 (1988).

Download references

Author information

Affiliations

  1. Department of Environmental Microbiology, National Public Health Institute, PO Box 95, FIN-70701, Kuopio, Finland

    • Pertti J. Martikainen
    •  & Hannu Nykänen
  2. Complex Systems Research Center, EOS, University of New Hampshire, Durham, New Hampshire, 03824-3525, USA

    • Patrick Crill
  3. Department of Biology, University of Joensuu, PO Box 111, FIN-80101, Joensuu, Finland

    • Jouko Silvola

Authors

  1. Search for Pertti J. Martikainen in:

  2. Search for Hannu Nykänen in:

  3. Search for Patrick Crill in:

  4. Search for Jouko Silvola in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/366051a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.