Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing

Abstract

EXCISION of introns from nuclear precursors to messenger RNAs (pre-mRNAs) by the spliceosome requires two distinct phosphodiester transfer (transesterification) reactions: exchange of a 3′–5′ for a 2′–5′ bond in the first step (lariat formation) and exchange of one 3′–5′ phosphodiester for another in the second step (exon ligation)1–3. We report here determination of the stereochemical course of each step using splicing substrates that contained a chiral phosphorothioate. This has provided strong evidence that both steps occur as single ‘in-line’ SN2 nucleophilic displacement reactions, analogous to the mechanism of group I self-splicing introns4,5. Additionally, because both steps are strongly inhibited by the RP phosphorothioate diastereomer, but not by SP, the spliceosome probably shifts between two active sites in catalysis of the two steps. Chemical and stereochemical similarities suggest that the catalytic site for the second step of spliceosomal processing is related to that of group I self-splicing introns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moore, M. J., Query, C. C. & Sharp, P. A. In The RNA World (eds R. Gesteland & J. Atkins), 303–357 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  2. Guthrie, C. Science 253, 157–163 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Ruby, S. W. & Abelson, J. Trends Genet. 7, 79–85 (1991).

    Article  CAS  Google Scholar 

  4. McSwiggen, J. A. & Cech, T. R. Science 244, 679–683 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Rajagopal, J., Doudna, J. A. & Szostak, J. Science 244, 692–694 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Knowles, J. R. A. Rev. Biochem. 49, 877–919 (1980).

    Article  CAS  Google Scholar 

  7. Eckstein, F. A. Rev. Biochem. 54, 367–402 (1985).

    Article  CAS  Google Scholar 

  8. Moore, M. J. & Sharp, P. A. Science 256, 992–997 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Eckstein, F., Schulz, H. H., Rüterjans, H., Haar, W. & Maurer, W. Biochemistry 11, 3507–3512 (1972).

    Article  CAS  Google Scholar 

  10. Burgers, P. M. J. & Eckstein, F. Proc. natn. Acad. Sci. U.S.A. 75, 4798–4800 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Bryant, F. R. & Benkovic, S. J. Biochemistry 18, 2825–2828 (1979).

    Article  CAS  Google Scholar 

  12. Potter, B. V. L., Connolly, B. A. & Eckstein, F. Biochemistry 22, 1369–1377 (1983).

    Article  CAS  Google Scholar 

  13. Maschhoff, K. L. & Padgett, R. A. Nucleic Acids Res. 20, 1949–1957 (1992).

    Article  CAS  Google Scholar 

  14. Yarus, M. FASEB J. 7, 31–39 (1993).

    Article  CAS  Google Scholar 

  15. Steitz, T. A. & Steitz, J. A. Proc. natn. Acad. Sci. U.S.A. 90, 6498–6502 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Pecoraro, V. L., Hermes, J. D. & Cleland, W. W. Biochemistry 23, 5262–5271 (1984).

    Article  CAS  Google Scholar 

  17. Reilly, D. J., Wallace, J. C., Melham, R. F., Kopp, D. W. & Edmonds, M. Meth. Enzym. 180, 177–191 (1989).

    Article  CAS  Google Scholar 

  18. Nelson, P. S., Bach, C. T. & Verheyden, J. P. H. J. org. Chem 49, 2314–2317 (1984).

    Article  CAS  Google Scholar 

  19. Sharp, P. A. Cell 42, 397–400 (1985).

    Article  CAS  Google Scholar 

  20. Cech, T. R. Cell 44, 207–210 (1986).

    Article  CAS  Google Scholar 

  21. Cech, T. R. A. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  Google Scholar 

  22. Suh, E.-R. & Waring, R. B. Nucleic Acids Res. 20, 6303–6309 (1992).

    Article  CAS  Google Scholar 

  23. Michel, F., Hanna, M., Green, R., Bartel, D. P. & Szostak, J. W. Nature 342, 391–395 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Been, M. D. & Perrotta, A. R. Science 252, 434–437 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Herschlag, D., Piccirilli, J. A. & Cech, T. R. Biochemistry 30, 4844–4854 (1991).

    Article  CAS  Google Scholar 

  26. Parker, R. & Siliciano, P. G. Nature 361, 660–662 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Hornig, H., Aebi, M. & Weissmann, C. Nature 324, 589–591 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Aebi, M., Hornig, H. & Weissmann, C. Cell 50, 237–246 (1987).

    Article  CAS  Google Scholar 

  29. Lamond, A. I., Konarska, M. M., Sharp, P. A. Genes Dev. 1, 532–543 (1987).

    Article  CAS  Google Scholar 

  30. Frank, D., Patterson, B. & Guthrie, C. Molec. cell. Biol. 12, 5197–5205 (1992).

    Article  CAS  Google Scholar 

  31. Mermoud, J. E., Cohen, P. & Lamond, A. I. Nucleic Acids Res. 20, 5263–5269 (1992).

    Article  CAS  Google Scholar 

  32. Fabrizio, P. & Abelson, J. Science 250, 404–409 (1990).

    Article  ADS  CAS  Google Scholar 

  33. McPheeters, D. S. & Abelson, J. Cell 71, 819–831 (1992).

    Article  CAS  Google Scholar 

  34. Stec, W. J., Zon, G., Egan, W. & Stec, B. J. Am. chem. Soc. 106, 6077–6079 (1984).

    Article  CAS  Google Scholar 

  35. Applied Biosystems Model 380 User Bulletin 44, 1–18 (1987).

  36. Milligan, J. F. & Uhlenbeck, O. C. Meth. Enzym. 180, 51–62 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, M., Sharp, P. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365, 364–368 (1993). https://doi.org/10.1038/365364a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365364a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing