Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat

Abstract

BEHAVIOURAL studies1–4 and field observations5–7 demonstrate that echolocating bats simultaneously perceive range, direction and shape of multiple objects in the environment as acoustic images derived from echoes. Cortical echo delay-tuned neurons contribute to the perception of object range, because focal inactivation of these neurons disrupts behavioural discrimination of range8. We report here that response properties of delay-tuned neurons in the cortical tonotopic area of the bat, Eptesicus, transform the sequential arrival times of echoes with different delays into a concurrent, accumulating neural representation of multiple objects at different ranges. The sharpness of delay tuning systematically increases at each best delay in a subpopulation of these neurons while responses to echoes at different delays are accumulated. The resulting concurrent, multiresolution representation of echo delay corresponds to neural implementation of a common representation of images used in computational vision9–11 and may provide the basis for representing acoustic images of multiple objects as acoustic 'scenes'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Griffin, D. R. Listening in the Dark (Yale Univ. Press, New Haven, 1958).

    Google Scholar 

  2. Simmons, J. A. Science 171, 925 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Simmons, J. A. J. acoust. Soc. Am. 54, 157 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Webster, F. A. & Brazier, O. G. Clearing House for Federal Scientific and Technical Information, Springfield, VA Technical Report AMRL-TR-67–192 (1968).

  5. Griffin, D., Friend, J. H. & Webster, F. A. J. exp. Zool. 158, 155 (1965).

    Article  CAS  Google Scholar 

  6. Schnitzler, H.-U. & Henson, O. W. in Animal Sonar Systems (eds Busnel, R.-G. & Fish, J. F.) 109–181 (Plenum, New York, 1980).

    Book  Google Scholar 

  7. Neuweiler, G. Physiol. Rev. 70, 615 (1990).

    Article  CAS  Google Scholar 

  8. Riquimaroux, H., Gaioni, S. J. & Suga, N. Science 251, 565 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Witkin, A. P. IEEE ICASSP Proceedings 39A.1.1 (1984).

  10. Mallat, S. G. IEEE Trans. Acoust. Speech Signal Processing 37, 2019 (1989).

    Article  Google Scholar 

  11. Akansu, A. N. & Haddad, R. A. Multiresolution Signal Decomposition (Academic, Boston, 1992).

    MATH  Google Scholar 

  12. Feng, A. S., Simmons, J. A. & Kick, S. A. Science 202, 645 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Suga, N., O'Neill, W. E. & Manabe, T. Science 200, 778 (1978).

    Article  ADS  CAS  Google Scholar 

  14. O'Neill, W. E. & Suga, N. Science 203, 69 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Sullivan, W. E. J. Neurophysiol. 48, 1011 (1982).

    Article  Google Scholar 

  16. Wong, D. & Shannon, S. L. Brain Res. 453, 349 (1988).

    Article  CAS  Google Scholar 

  17. Berkowitz, A. & Suga, N. Hearing Res. 41, 255 (1989).

    Article  CAS  Google Scholar 

  18. Schuller, G., O'Neill, W. E. & Radtke-Schuller, S. Eur. J. Neurosci. 3, 1165 (1991).

    Article  Google Scholar 

  19. Dear, S. P., Fritz, J. Haresign, T., Ferragamo, M. & Simmons, J. A. J. Neurophysiol. (in the press).

  20. Kick, S. A. & Simmons, J. A. J. Neurosci. 4, 2725 (1984).

    Article  CAS  Google Scholar 

  21. Marr, D. Vision (Freeman, San Francisco, 1982).

    Google Scholar 

  22. Rosenfeld, A. & Thurston, M. IEEE Trans. Computers C20, 562 (1971).

    Article  Google Scholar 

  23. Marr, D. & Hildreth, E. C. Proc. R. Soc. B207, 187 (1980).

    ADS  CAS  Google Scholar 

  24. Burt, P. J., Hong, T. H. & Rosenfeld, A. IEEE Trans. Syst. Man. Cybern. 11, 802 (1981).

    Article  Google Scholar 

  25. Hong, T. H. & Shneier, M. IEEE Trans. Pattern Analyt. Machine Intel. 6, 229 (1984).

    Article  CAS  Google Scholar 

  26. Hong, T. H. & Rosenfeld, A. IEEE Trans. Pattern Analyt. Machine Intel. 6, 222 (1984).

    Article  CAS  Google Scholar 

  27. Marr, D. & Poggio, T. Proc. R. Soc. B204, 301 (1979).

    ADS  CAS  Google Scholar 

  28. Suga, N. Neural Networks 3, 3 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dear, S., Simmons, J. & Fritz, J. A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat. Nature 364, 620–623 (1993). https://doi.org/10.1038/364620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing