Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diamond nucleation by hydrogenation of the edges of graphitic precursors

Abstract

HOW diamond films grow by chemical vapour deposition is now fairly well understood1,2, but the mechanism by which the diamond phase first nucleates is still unclear. Evidence is accumulating that atomic hydrogen, known to be important in diamond growth1,2, also plays an important role in nucleation3,4. The nature of the carbon precursor to diamond has been much debated2–9; although there is some evidence that graphite is formed before diamond nucleation2,5,6 and that diamond grows epitaxially on the graphite edges7, others have suggested10,11 that graphite formation is detrimental to diamond nucleation. Here we present calculations that suggest that diamond films can nucleate by the initial condensation of graphite and subsequent hydrogenation of the {1¯100} prism planes along the edges of the graphite particles. If nucleation really does occur in this manner, the understanding that our model provides should assist in the development of methods for growing large diamond single crystals (now limited in part by secondary nucleation of independent crystals) and highly oriented epitaxial diamond films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Butler, J. E. & Woodin, R. L. Phil. Trans. R. Soc. London A342, 209–224 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Angus, J. C. et al. Phil. Trans. R. Soc. London A342, 195–208 (1993).

    ADS  CAS  Google Scholar 

  3. Badziag, P., Verwoerd, W. S., Ellis, W. P. & Greiner, N. R. Nature 343, 244–245 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Angus, J. C. et al. Proc. electrochem. Soc. Meeting, Honolulu, May 1993.

    Google Scholar 

  5. Belton, D. N. & Schmieg, S. J. Surf. Sci. 233, 131–140 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Waite, M. M. & Shah, S. I. Appl. Phys. Lett. 60, 2344–2346 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Li, Z. et al. J. appl. Phys. 73, 711–715 (1992).

    Article  ADS  Google Scholar 

  8. Matsumoto, S. & Matsui, Y. J. Mater. Sci. 18, 1785–1793 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Angus, J. C., Hoffman, R. W. & Schmidt, P. H. in Science and Technology of New Diamond (eds Saito, S., Fukunaga, O. & Yoshikawa, M.) 9–16 (KTK Terra Scientific, Tokyo, 1990).

    Google Scholar 

  10. Spitsyn, B. V., Bouilov, L. L. & Derjaguin, B. V. J. Cryst. Growth 52, 219–226 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Frenklach, M. & Wang, H. Phys. Rev. B43, 1520–1544 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Rye, R. R. Surf. Sci. 69, 653–667 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Frenklach, M. & Spear, K. E. J. Mater. Res. 3, 133–140 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Raiche, G. A. & Jeffries, J. B. Carbon 28, 796 (1990).

    Article  Google Scholar 

  15. Badzian, A., Badzian, T., Roy, R. Messier, R. & Spear, K. E. Mat. Res. Bull. 23, 531–548 (1988).

    Article  CAS  Google Scholar 

  16. Oral, B. & Flodström, A. Surface and Coatings Techn. 54/55, 374–379 (1992).

    Article  Google Scholar 

  17. Tehrsson, P. E., Glesener, J. & Morrish, A. Thin Solid Films 212, 81–90 (1992).

    Article  Google Scholar 

  18. Rudder, R. A. et al. in Applications of Diamond Films and Related Materials Mat. Sci. Monogr. 73 (eds Tzeng, Y., Yoshikawa, M., Murakawa, M. & Feldman, A.) 395–398 (Elsevier, Amsterdam, 1991).

    Google Scholar 

  19. Meilinas, R. J., Chang, R. P. H., Liu, S. & Kappes, M. M. Appl. Phys. Lett. 59, 3461–3463 (1991).

    Article  ADS  Google Scholar 

  20. Mehandru, S., Anderson, A. B. & Angus, J. C. J. phys. Chem. 96, 10978–10982 (1992).

    Article  CAS  Google Scholar 

  21. Yang, R. T. & Wong, C. Am. Inst. chem. Eng. J. 29, 338–340 (1983).

    Article  CAS  Google Scholar 

  22. Tersoff, J. Phys. Rev. Lett. 61, 2879–2882 (1988).

    Article  ADS  CAS  Google Scholar 

  23. DiVincenzo, D. P., Mele, E. J. & Holzwarth, N. A. W. Phys. Rev. B27, 2458–2468 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Angus, J. C., Sunkara, M., Sahaida, S. R. & Glass, J. T. J. Mater. Res. 7, 3001–3009 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Li, Z. thesis, Case Western Reserve Univ. (1993).

  26. Iijima, S., Aikawa, Y. & Baba, K. J. Mater. Res. 6, 1491–1497 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrecht, W., Lee, C., Segall, B. et al. Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature 364, 607–610 (1993). https://doi.org/10.1038/364607a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364607a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing