Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic-field penetration depth in TI2Ba2CuO6+δ in the overdoped regime


THE magnetic field penetration depth λ is a basic parameter of superconductivity, related to ns/m* (superconducting carrier density/effective mass) as λ-2 ns/m* in the limit where the coherence length ζ is much shorter than the mean free path l (the 'clean limit'). Muon spin relaxation (µSR) measurements1,2 of λ in high-transition-temperature (high-Tc ) copper oxide superconductors have revealed remarkable correlations between Tc and ns/m*: Tc increases linearly with ns/m* in the underdoped region, followed by a saturation with increasing carrier doping. Here we report µSR measurements of λ in ceramic specimens of of the superconductor TI-2Ba2CuO6+δ (TI-2201) in the 'overdoped' region where Tc decreases with increasing hole doping. Recent measurements of upper critical field and resistivity3confirm that overdoped TI-2201 lies well in the clean limit with a ζ<<l. We find that the muon spin relaxation rate σ(T → 0) λ −2 ns/m* in TI-2201 decreases with increasing hole doping, implying that either ns no longer scales with the normal-state carrier density nn , and/or m* for a superconducting pair becomes much larger than the value expected from the normal-state effective mass m*n . This behaviour of overdoped TI-2201 is in marked contrast to conventional metallic superconductors having a retarded interaction, in which the normal-state properties (nn , m*n , l)directly represent the corresponding values in the superconducting state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Uemura, Y. J. et al. Phys. Rev. Lett. 62, 2317–2320 (1989).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Uemura, Y. J. et al. Phys. Rev. Lett. 66, 2665–2668 (1991).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Mackenzie, A. P. et al. Phys. Rev. Lett. (submitted).

  4. 4

    Pümpin, B. et al. Hyperfine Interact. 63, 25–31 (1990).

    ADS  Article  Google Scholar 

  5. 5

    Seaman, C. L. et al. Phys. Rev. B42, 6801–6804 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Schneider, T. & Keller, H. Phys. Rev. Lett. 69, 3374–3376 (1992).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Zhang, H. & Sato, H. Phys. Rev. Lett. 70, 1697–1699 (1993).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Uemura, Y. J., Luke, G. M. & Le, L. P. Synthetic Metals 56, 2845–2852 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Kubo, Y., Shimakawa, Y., Manako, T. & Igarashi, H. Phys. Rev. B43, 7875–7882 (1991).

    ADS  Article  Google Scholar 

  10. 10

    Shimakawa, Y. Physica C204, 247–261 (1993).

    ADS  Article  Google Scholar 

  11. 11

    Obertelli, S. D., Cooper, J. R. & Tallon, J. L. Phys. Rev. B46, 14928–14931 (1992).

    ADS  Article  Google Scholar 

  12. 12

    Subramanian, M. A. Mater. Chem. Phys. (in the press).

  13. 13

    Niedermayer, Ch. et al. Nuclear and Particle Physics Newsletter, Annual Report 1992 73–74 (Paul Scherrer Institute, Villigers, 1992).

  14. 14

    Manako, T., Kubo, Y. & Shimakawa, Y. Phys. Rev. B46, 11019–11024 (1992).

    ADS  Article  Google Scholar 

  15. 15

    Barford, W. & Gunn, J. M. F. Physica C156, 515–522 (1988).

    ADS  Article  Google Scholar 

  16. 16

    Smith, M. G., Manthiram, A., Zhou, J., Goodenough, J. B. & Markert, J. T. Nature 351, 549–551 (1991).

    ADS  CAS  Article  Google Scholar 

  17. 17

    de Gennes, P. G. Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

    MATH  Google Scholar 

  18. 18

    Nozières, P. & Schmitt-Rink, S. J. Low Temp. Phys. 59, 195–211 (1985).

    ADS  Article  Google Scholar 

  19. 19

    Kitaoka, Y. et al. Physica C179, 107–117 (1991).

    ADS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uemura, Y., Keren, A., Le, L. et al. Magnetic-field penetration depth in TI2Ba2CuO6+δ in the overdoped regime. Nature 364, 605–607 (1993).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing