Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Group II self-splicing introns in bacteria

Abstract

LIKE nuclear premessenger introns, group II self-splicing introns are excised from primary transcripts as branched molecules, containing a 2′–5′ phosphodiester bond. For this reason, it is widely believed that the ribozyme (catalytic RNA) core of group II introns, or some evolutionarily related molecule, gave rise to the RNA components of the spliceosomal splicing machinery of the eukaryotic nucleus1. One difficulty with this hypothesis has been the restricted distribution of group II introns. Unlike group I self-splicing introns, which interrupt not only organelle primary transcripts, but also some bacterial and nuclear genes2–5, group II introns seemed to be confined to mitochondrial and chloroplast genomes (reviewed in ref. 6). We now report the discovery of group II introns both in cyanobacteria (the ancestors of chloroplasts7) and the γ subdivision of purple bacteria, or proteobacteria8, whose α subdivision probably gave rise to mitochondria9. At least one of these introns actually self-splices in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sharp, P. A. Science 254, 663 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Cech, T. R. Gene 73, 259–271 (1988).

    Article  CAS  Google Scholar 

  3. Xu, M. Q., Kathe, S. D., Goodrich-Blair, H., Nierzwicki-Bauer, S. A. & Shub, D. A. Science 250, 1566–1570 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Kuhsel, M. G., Strickland, R. & Palmer, J. D. Science 250, 1570–1573 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Reinhold-Hurek, B. & Shub, D. A. Nature 357, 173–176 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Michel, F., Umesono, K. & Ozeki, H. Gene 82, 5–30 (1989).

    Article  CAS  Google Scholar 

  7. Schwartz, R. M. & Dayhoff, M. O. Science 199, 395–403 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Stackebrandt, E., Murray, R. G. E. & Trüper, H. G. Int. J. syst. Bact. 38, 321–325 (1988).

    Article  Google Scholar 

  9. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. & Woese, C. R. Proc. natn. Acad. Sci. U.S.A. 82, 4443–4447 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Michel, F. & Lang, B. F. Nature 316, 641–643 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Xiong, Y. & Eickbush, T. H. EMBO J. 9, 3353–3362 (1990).

    Article  CAS  Google Scholar 

  12. Woese, C. R. et al. System, appl. Microbiol. 6, 25–33 (1985).

    Article  CAS  Google Scholar 

  13. Dujon, B. Gene 82, 91–114 (1989).

    Article  CAS  Google Scholar 

  14. Meunier, B., Tian, G. L., Macadre, C., Slonimski, P. P. & Lazowska, J. in Structure, Function and Biogenesis of Energy Transfer Systems (eds Quagliariello, E., Papa, S., Palmieri, F. & Saccone, C.) 169–174 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  15. Skelly, P. J., Hardy, C. M. & Clark-Walker, G. D. Curr. Genet. 20, 115–120 (1991).

    Article  CAS  Google Scholar 

  16. Kück, U. Molec. gen. Genet. 218, 257–266 (1989).

    Article  Google Scholar 

  17. Ochman, H. & Selander, R. K. J. Bact. 157, 690–693 (1984).

    CAS  PubMed  Google Scholar 

  18. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Wiley, New York, 1989).

    Google Scholar 

  19. Herdman, M., Delaney, S. F. & Carr, N. G. J. gen. Microbiol. 79, 233–237 (1973).

    Article  CAS  Google Scholar 

  20. Jacquier, A. & Michel, F. J. molec. Biol. 213, 437–447 (1990).

    Article  CAS  Google Scholar 

  21. Hiom, K. & Sedgwick, S. G. J. Bact. 173, 7368–7391 (1991).

    Article  CAS  Google Scholar 

  22. Tiranti, V., Barat-Guéride, M., Bijl, J., DiDonato, S. & Zeviani, M. Nucleic Acids Res. 19, 4291 (1991).

    Article  CAS  Google Scholar 

  23. Chase, J. W., Merrill, B. M. & Williams, K. R. Proc. natn. Acad. Sci. U.S.A. 80, 5480–5484 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  25. Michel, F. et al. Genes Dev. 6, 1373–1385 (1992).

    Article  CAS  Google Scholar 

  26. Peebles, C. L., Benatan, E. J., Jarrell, K. A. & Perlman, P. S. Cold Spring Harbor Symp. quant. Biol. 52, 223–232 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferat, JL., Michel, F. Group II self-splicing introns in bacteria. Nature 364, 358–361 (1993). https://doi.org/10.1038/364358a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364358a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing