Letter | Published:

Possibility of chemical weathering before the advent of vascular land plants

Nature volume 364, pages 223225 (15 July 1993) | Download Citation

Subjects

Abstract

CHEMICAL weathering today is generally assumed to occur primarily in soils1,2. The rise of vascular plants during the Silurian and Devonian periods about 400 Myr ago brought about an increase in soil microbial activity and thus in soil CO2 generation, and it has therefore been widely believed that, as a result of these changes, soil CO2 replaced atmospheric CO2 as the primary agent of chemical weathering3–6. Here we show that the aerated region above the water table (the vadose zone) exerts a strong influence on the CO2 concentration to which runoff is exposed as it percolates beneath the soil, and we argue that this could have been the case before the Silurian. We present calculations which show that, for present-day atmospheric CO2 concentrations, a low level of microbial respiration may be sufficient to support appreciable CO2 concentrations in the vadose zone because of the slow rate of CO2 loss to the surface. Despite the small amount of microbial respiration in pre-Silurian soils, CO2 concentrations in subsoil vadose zones might therefore have been sufficient to account for the apparent constancy of chemical weathering since the mid-Proterozoic7, obviating the need to invoke high levels of atmospheric CO2 to explain the weathering record.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Introduction to the Petrology of Soils and Chemical Weathering (Wiley, 1991).

  2. 2.

    The Geochemistry of Natural Waters (Prentice-Hall, Englewood Cliffs, 1988).

  3. 3.

    & Science 165, 391–392 (1969).

  4. 4.

    , & Nature 320, 27–33 (1986).

  5. 5.

    Science 249, 1382–1386 (1990).

  6. 6.

    Am J. Sci 291, 339–376 (1991).

  7. 7.

    The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984).

  8. 8.

    & Water Resources Res. 29, 647–659 (1993).

  9. 9.

    , , & , Geomicrobiol J. 9, 197–216 (1992).

  10. 10.

    U.S. Geol. Surv. Prof. Pap. 650-B, 185–188 (1969).

  11. 11.

    , & J. Hydrol. 43, 355–371 (1979).

  12. 12.

    , , & Radiocarbon 25, 301–314 (1983).

  13. 13.

    , , & Radiocarbon 25, 315–346 (1983).

  14. 14.

    & Water Resources Res. 20, 1193–1208 (1984).

  15. 15.

    & Eos 69, 1178–1179 (1988).

  16. 16.

    & Science 258, 278–281 (1992).

  17. 17.

    & Geochim. cosmochim. Acta 47, 623–629 (1983).

  18. 18.

    & in Physical and Chemical Weathering in Geochemical Cycles (eds Lerman, A. & Meybeck, M.) 61–82 (Kluwer, The Netherlands, 1988).

  19. 19.

    Biol. Rev. 45, 319–352 (1970).

  20. 20.

    & Precambr Res. 8, 201–217 (1979).

  21. 21.

    in Geological Factors and the Evolution of Plants (ed. Tiffney, B. H.), 47–91 (Yale Univ. Press, 1985).

  22. 22.

    Organic Geochemistry of Natural Waters (Martinus Nijhoff, The Netherlands, 1985).

  23. 23.

    Water Resources Res. 27, 2555–2564 (1991).

  24. 24.

    & Nature 340, 457–460 (1989).

  25. 25.

    , , , & Water Resources Res. 25, 1893–1905 (1989).

  26. 26.

    & Adv. appl. Microbiol. 33, 107–172 (Academic, New York, 1988).

  27. 27.

    , Earth planet. Sci. Lett. 71, 229–240 (1984).

  28. 28.

    Fundamentals of Soil Physics (Academic, 1980).

  29. 29.

    Soil Physics with BASIC: Transport Models for Soil-Plant Systems (Elsevier, 1985).

  30. 30.

    & Trans. Faraday Soc. 57, 1200–1207 (1961).

  31. 31.

    Biogeochemistry: an Analysis of Global Change (Academic, New York, 1991).

  32. 32.

    Communities and Ecosystems (Macmillan, 1975).

  33. 33.

    & Appl. Envir. Microbiol. 57, 2308–2311 (1991).

  34. 34.

    Geol. Soc. Am. Abstr. Prog. 24, A99 (1992).

  35. 35.

    , & , in Data of Geochemistry 6th Edn (ed. Fleischer, M.) (U.S. Geol. Surv. Prof. Pap. 440-F, 1963).

  36. 36.

    , , & Water Resources Res. 11, 963–967 (1975).

  37. 37.

    , & Geol. Soc. Am. Bull. 97, 1232–1238 (1986).

  38. 38.

    , & Water Resources Res. 27, 2543–2554 (1991).

  39. 39.

    , & Geology 19, 1017–1020 (1991).

  40. 40.

    Am. J. Sci. 291, 377–400 (1991).

  41. 41.

    & Nature 355, 342–344 (1992).

  42. 42.

    & in Water-Rock Interaction 7 (eds Kharaka, Y. K. & Maest, A. S.) 473–476 (Balkema, Rotterdam, 1992).

  43. 43.

    , , , & Water Resources Res. 29, 973–984 (1993).

Download references

Author information

Affiliations

  1. Departmentof Geology, Washington State University, Pullman, Washington 99164-2812, USA

    • C. K. Keller
  2. Battelle, Pacific Northwest Laboratories, Richland, Washington 99352, USA

    • B. D. Wood

Authors

  1. Search for C. K. Keller in:

  2. Search for B. D. Wood in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/364223a0

Further reading Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.