Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game

Abstract

THE Prisoner's Dilemma is the leading metaphor for the evolution of cooperative behaviour in populations of selfish agents, especially since the well-known computer tournaments of Axelrod1 and their application to biological communities2,3. In Axelrod's simulations, the simple strategy tit-for-tat did outstandingly well and subsequently became the major paradigm for reciprocal altruism4 12. Here we present extended evolutionary simulations of heterogeneous ensembles of probabilistic strategies including mutation and selection, and report the unexpected success of another protagonist: Pavlov. This strategy is as simple as tit-for-tat and embodies the fundamental behavioural mechanism win-stay, lose-shift, which seems to be a widespread rule13. Pavlov's success is based on two important advantages over tit-for-tat: it can correct occasional mistakes and exploit unconditional cooperators. This second feature prevents Pavlov populations from being undermined by unconditional cooperators, which in turn invite defectors. Pavlov seems to be more robust than tit-for-tat, suggesting that cooperative behaviour in natural situations may often be based on win-stay, lose-shift.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Axelrod, R. The Evolution of Cooperation (Basic Books, New York, 1984).

    MATH  Google Scholar 

  2. Axelrod, R. & Hamilton, W. D. Science 211, 1390–1396 (1981).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. Axelrod, R. & Dion, D. Science 242, 1385–1390 (1988).

    ADS  CAS  Article  Google Scholar 

  4. Wilkinson, G. Nature 308, 181–184 (1984).

    ADS  Article  Google Scholar 

  5. Lombardo, M. P. Science 227, 1363–1365 (1985).

    ADS  CAS  Article  Google Scholar 

  6. Milinski, M. Nature 325, 433–435 (1987).

    ADS  CAS  Article  Google Scholar 

  7. May, R. M. Nature 327, 15–17 (1987).

    ADS  Article  Google Scholar 

  8. Dugatkin, L. A. Behav. Ecol. Sociobiol. 25, 395–397 (1988).

    Article  Google Scholar 

  9. Nowak, M. & Sigmund, K. Nature 355, 250–253 (1992).

    ADS  Article  Google Scholar 

  10. Krebs, J. R. & Davies N. B. An Introduction to Behavioural Ecology (Sinauer, MA, 1981).

    Google Scholar 

  11. Dawkins, R. The Selfish Gene (Oxford Univ. Press, Oxford, 1988).

    Google Scholar 

  12. Sigmund, K. Games of Life (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  13. Domjan, M. & Burkhard, B. The Principles of Learning and Behaviour (Brooks/Cole, Monterey, 1986).

    Google Scholar 

  14. Nowak, M. A. & May, R. M. Nature 359, 826–829 (1992).

    ADS  Article  Google Scholar 

  15. Selten, R. & Hammerstein, P. Th. Behav. Brain Sci. 7, 115–142 (1984).

    Article  Google Scholar 

  16. Boyd, R. & Lorberbaum, J. P. Nature 327, 58–59 (1987).

    ADS  Article  Google Scholar 

  17. Nowak, M. & Sigmund, K. Proc. natn. Acad. Sci. U.S.A. 90, 5091–5094 (1993).

    ADS  CAS  Article  Google Scholar 

  18. Kraines, D. & Kraines, V. Theory and Decision 26, 47–63 (1988).

    MathSciNet  Article  Google Scholar 

  19. Rapoport, A. & Chammah, A. M. Prisoner's Dilemma (Univ. of Michigan Press, Ann Arbor, 1965).

    Book  Google Scholar 

  20. Nowak, M. & Sigmund, K. Acta appl. Math. 20, 247–265 (1990).

    MathSciNet  Article  Google Scholar 

  21. Boyd, R. J. theor. Biol. 136, 47–56 (1989).

    CAS  Article  Google Scholar 

  22. Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, Cambridge, 1982).

    Book  Google Scholar 

  23. Hofbauer, J. & Sigmund, K. The Theory of Evolution and Dynamical Systems (Cambridge Univ. Press, Cambridge, 1988).

    MATH  Google Scholar 

  24. Maynard Smith, J. Th. Behav. Brain Sci. 7, 95–101 (1984).

    Article  Google Scholar 

  25. Axelrod, R. in Genetic Algorithms and Simulated Annealing (ed. Davis, D.) (Pitman, London, 1987).

    Google Scholar 

  26. Lindgren, K. in Artificial Life II (eds Farmer, D. et al.) (Proc. Santa Fe Inst. Stud., Addison Welsey, 1991).

    Google Scholar 

  27. Reboreda, J. C. & Kacelnik, A. J. exp. Animal Behav. 60, 176–193 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nowak, M., Sigmund, K. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game. Nature 364, 56–58 (1993). https://doi.org/10.1038/364056a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364056a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing