Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls

Abstract

CARBON exhibits a unique ability to form a wide range of structures. In an inert atmosphere it condenses to form hollow, spheroidal fullerenes1–4. Carbon deposited on the hot tip of the cathode of the arc-discharge apparatus used for bulk fullerene synthesis will form nested graphitic tubes and polyhedral particles5–8. Electron irradiation of these nanotubes and polyhedra transforms them into nearly spherical carbon 'onions'9. We now report that covaporizing carbon and cobalt in an arc generator leads to the formation of carbon nanotubes which all have very small diameters (about 1.2 nm) and walls only a single atomic layer thick. The tubes form a web-like deposit woven through the fullerene-containing soot, giving it a rubbery texture. The uniformity and single-layer structure of these nanotubes should make it possible to test their properties against theoretical predictions10–13.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).

    ADS  CAS  Google Scholar 

  2. Krätschmer, W., Fostiropoulos, K. & Huffman, D. R. Chem. Phys. Lett. 170, 167–170 (1990).

    ADS  Article  Google Scholar 

  3. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).

    ADS  Article  Google Scholar 

  4. Meijer, G. & Bethune, D. S. J. chem. Phys. 93, 7800–7802 (1990).

    ADS  CAS  Article  Google Scholar 

  5. Iijima, S. Nature 354, 56–58 (1991).

    ADS  CAS  Article  Google Scholar 

  6. Iijima, S., Ichihashi, T. & Ando, Y. Nature 356, 776–778 (1992).

    ADS  CAS  Article  Google Scholar 

  7. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    ADS  CAS  Article  Google Scholar 

  8. Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M. & Hayashi, T. Chem. Phys. Lett. 204, 277–282 (1993).

    ADS  CAS  Article  Google Scholar 

  9. Ugarte, D. Nature 359, 707–708 (1992).

    ADS  CAS  Article  Google Scholar 

  10. Hamada, N., Sawada, S. & Oshiyama, A. Phys. Rev. Lett. 68, 1579–1581 (1992).

    ADS  CAS  Article  Google Scholar 

  11. Mintmire, J. W., Dunlap, B. I. & White, C. T. Phys. Rev. Lett. 68, 631–634 (1992).

    ADS  CAS  Article  Google Scholar 

  12. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Phys. Rev. B46, 1804–1811 (1992).

    ADS  CAS  Article  Google Scholar 

  13. Robertson, D. H., Brenner, D. W. & Mintmire, J. W. Phys. Rev. B45, 12592–12595 (1992).

    CAS  Article  Google Scholar 

  14. Endo, M. Chemtech 18, 568–576 (1998).

    Google Scholar 

  15. Baker, R. T. Carbon 27, 315–323 (1989).

    CAS  Article  Google Scholar 

  16. Tibbetts, G. G. J. Cryst. Growth 73, 431–438 (1985).

    ADS  CAS  Article  Google Scholar 

  17. Bacon, R. J. appl. Phys. 31, 283–290 (1960).

    ADS  Article  Google Scholar 

  18. Jose-Yacaman, M., Miki-Yoshida, M., Rendon, L. & Santiesteban, J. G. Appl. Phys. Lett. 62, 657–659 (1993).

    ADS  CAS  Article  Google Scholar 

  19. Baker, R. T. & Harris, P. S. in Chemistry and Physics of Carbon, Vol. 14, 83–165 (Marcel Dekker, New York, 1978).

    Google Scholar 

  20. Kim, M. S., Rodriguez, N. M. & Baker, R. T. J. Catal. 131, 60–73 (1991).

    CAS  Article  Google Scholar 

  21. Pederson, M. R. & Broughton, J. Q. Phys. Rev. Lett. 69, 2689–2692 (1992).

    ADS  CAS  Article  Google Scholar 

  22. Ajayan, P. M. & Iijima, S. Nature 361, 333–334 (1993).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bethune, D., Kiang, C., de Vries, M. et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993). https://doi.org/10.1038/363605a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363605a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing