Abstract
CARBON exhibits a unique ability to form a wide range of structures. In an inert atmosphere it condenses to form hollow, spheroidal fullerenes1–4. Carbon deposited on the hot tip of the cathode of the arc-discharge apparatus used for bulk fullerene synthesis will form nested graphitic tubes and polyhedral particles5–8. Electron irradiation of these nanotubes and polyhedra transforms them into nearly spherical carbon 'onions'9. We now report that covaporizing carbon and cobalt in an arc generator leads to the formation of carbon nanotubes which all have very small diameters (about 1.2 nm) and walls only a single atomic layer thick. The tubes form a web-like deposit woven through the fullerene-containing soot, giving it a rubbery texture. The uniformity and single-layer structure of these nanotubes should make it possible to test their properties against theoretical predictions10–13.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).
Krätschmer, W., Fostiropoulos, K. & Huffman, D. R. Chem. Phys. Lett. 170, 167–170 (1990).
Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).
Meijer, G. & Bethune, D. S. J. chem. Phys. 93, 7800–7802 (1990).
Iijima, S. Nature 354, 56–58 (1991).
Iijima, S., Ichihashi, T. & Ando, Y. Nature 356, 776–778 (1992).
Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).
Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M. & Hayashi, T. Chem. Phys. Lett. 204, 277–282 (1993).
Ugarte, D. Nature 359, 707–708 (1992).
Hamada, N., Sawada, S. & Oshiyama, A. Phys. Rev. Lett. 68, 1579–1581 (1992).
Mintmire, J. W., Dunlap, B. I. & White, C. T. Phys. Rev. Lett. 68, 631–634 (1992).
Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Phys. Rev. B46, 1804–1811 (1992).
Robertson, D. H., Brenner, D. W. & Mintmire, J. W. Phys. Rev. B45, 12592–12595 (1992).
Endo, M. Chemtech 18, 568–576 (1998).
Baker, R. T. Carbon 27, 315–323 (1989).
Tibbetts, G. G. J. Cryst. Growth 73, 431–438 (1985).
Bacon, R. J. appl. Phys. 31, 283–290 (1960).
Jose-Yacaman, M., Miki-Yoshida, M., Rendon, L. & Santiesteban, J. G. Appl. Phys. Lett. 62, 657–659 (1993).
Baker, R. T. & Harris, P. S. in Chemistry and Physics of Carbon, Vol. 14, 83–165 (Marcel Dekker, New York, 1978).
Kim, M. S., Rodriguez, N. M. & Baker, R. T. J. Catal. 131, 60–73 (1991).
Pederson, M. R. & Broughton, J. Q. Phys. Rev. Lett. 69, 2689–2692 (1992).
Ajayan, P. M. & Iijima, S. Nature 361, 333–334 (1993).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bethune, D., Kiang, C., de Vries, M. et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993). https://doi.org/10.1038/363605a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/363605a0
Further reading
-
Porous covalent organic nanotubes and their assembly in loops and toroids
Nature Chemistry (2022)
-
A Review on Fracture Analysis of CNT/Graphene Reinforced Composites for Structural Applications
Archives of Computational Methods in Engineering (2022)
-
The study of heat flux and external electric field effects on carbon nanotube behavior as an atomic nano-pump
Applied Physics A (2022)
-
Ultra-fine metal particles dispersed on single-walled carbon nanotubes for energy devices
Journal of Materials Science (2022)
-
Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes
Nano Research (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.