Abstract
OLIGOMERS containing tracts of cytidine form hemiprotonated base pairs at acid pH and have been considered to be double-stranded. We have solved the structure of the DNA oligomer 5′-d(TCCCCC) at acid pH and find that it is a four-stranded complex in which two base-paired parallel-stranded duplexes are intimately associated, with their base pairs fully intercalated. The relative orientation of the duplexes is antiparallel, so that each base pair is face-to-face with its neighbours. The NMR spectrum displays only six spin systems, showing that the structure is highly symmetrical on the NMR timescale; the four strands are equivalent. A model derived by energy minimization and con-strained molecular dynamics shows excellent compatibility with the observed nuclear Overhauser effects (NOEs) particularly for the very unusual inter-residue sugar-sugar NOEs HI′-HI′, Hl′-H2" and H1′-H4′. These NOEs are probably diagnostic for such tetrameric structures.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ligands stimulating antitumour immunity as the next G-quadruplex challenge
Molecular Cancer Open Access 17 September 2022
-
Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models
Nature Communications Open Access 29 July 2022
-
The mechanism of replication stalling and recovery within repetitive DNA
Nature Communications Open Access 19 July 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Marsh, R. E., Bierstedt, R. & Eichhorn, E. L. Acta. crystallogr. 15, 310–316 (1962).
Akrinimiski, E. O., Sander, C. & Ts'o, P. O. P. Biochemistry 2, 340–344 (1963).
Hartman, K. A. Jr & Rich, A. J. Am. Chem. Soc. 87, 2033–2039 (1965).
Inman, R. B. J. molec. Biol. 9, 624–637 (1964).
Langridge, R. & Rich, A. Nature 198, 725–728 (1963).
Arnott, S., Chandrasekaran, R. & Leslie, A. G. W. J. molec. Biol. 106, 735–748 (1976).
Westhof, E., Roa, S. T. & Sundaralingam, M. J. molec. Biol. 142, 331–361 (1980).
Westhof, E. & Sundaralingam, M. Proc. natn. Acad. Sci. U.S.A. 77, 1852–1856 (1980).
Luo, J., Sarma, M. H., Yuan, R. & Sarma, R. H. FEBS Lett. 306, 223–228 (1992).
Leroy, J.-L., Kettani, A., Kochoyan, M. & Guéron, M. Abstr. XIV Int. Conf. Magn. Reson. in Biol. Systems, Warwick (1990).
Leroy, J.-L., Gehring, K. & Gueron, M. Abstr. XV Int. Conf. Magn. Reson. In Biol. Systems, Jerusalem (1992).
Leroy, J.-L. et al. Biochemistry (in the press).
Aboul-ela, F., Murchie, A. I. H. & Lilley, D. M. J. Nature 360, 280–282 (1992).
Kellogg, G. W. J. magn. Reson. 98, 176–182 (1992).
Brünger, A. T. X-PLOR (Version 2.1) Manual (Yale Univ., Connecticut, 1990).
EMBO Workshop, EMBO J. 8, 1–4 (1989).
Altona, C. Recl. Chim. Pays Bas 101, 413–433 (1982).
Kistenmacher, T. J., Rossi, M. & Marzilli, L. G. Biopolymers 17, 2581–2585 (1978).
Lyamichev, V. I. et al. Nature 339, 634–637 (1989).
Ahmed, S. & Henderson, E. Nucleic Acids Res. 20, 507–511 (1992).
Blackburn, E. H. Nature 350, 569–572 (1991).
Sen, D. & Gilbert, W. Nature 334, 364–366 (1988).
Sundquist, W. I. & Klug, A. Nature 342, 825–829 (1989).
Smith, F. W. & Feigon, J. Nature 356, 164–168 (1992).
Kang, C., Zhang, X., Ratliff, R., Moyzis, R. & Rich, A. Nature 356, 126–131 (1992).
Kochoyan, M., Leroy, J.-L. & Guéron, M. Biochemistry 29, 4799–4805 (1990).
Westhof, E. Nature 358, 459 (1992).
Wüthrich, K. NMR of Proteins and Nucleic Acids 211 (Wiley, New York, 1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gehring, K., Leroy, JL. & Guéron, M. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 363, 561–565 (1993). https://doi.org/10.1038/363561a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/363561a0
This article is cited by
-
Ligands stimulating antitumour immunity as the next G-quadruplex challenge
Molecular Cancer (2022)
-
Dissipative DNA nanotechnology
Nature Chemistry (2022)
-
Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models
Nature Communications (2022)
-
The mechanism of replication stalling and recovery within repetitive DNA
Nature Communications (2022)
-
RNABPDB: Molecular Modeling of RNA Structure—From Base Pair Analysis in Crystals to Structure Prediction
Interdisciplinary Sciences: Computational Life Sciences (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.