Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tyrosine kinase-dependent selection of transmitter responses induced by neuronal contact

Abstract

TRANSMITTER receptors are localized to discrete cellular sites1 such that only those responses appropriate for a particular pattern of inputs are activated2–4. How neurons select between synaptic and extrasynaptic responses during development is not understood. We have investigated how contact during synapse formation between identified leech neurons5–7 selectively suppresses the modulation of extrasynaptic channels by protein kinase C8–10. A microelectrode with an isolated membrane patch containing channels from an uninnervated target neuron was 'crammed'11 into a similar cell contacted by a presynaptic partner. We report here that within a few minutes, the crammed channels were rendered insensitive to activation of protein kinase C, demonstrating the action of a cytoplasmic signal. Treatment of the neurons with selective inhibitors of tyrosine kinases12, which are signalling molecules during normal and oncogenic cellular differentiation13,14, prevented the loss of channel modulation. Thus, tyrosine kinases mediate early functional changes during specific synapse formation that are induced by neuronal contact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, MA, 1992).

    Google Scholar 

  2. Gerschenfeld, H. M. Physiol. Rev. 53, 1–119 (1973).

    Article  CAS  Google Scholar 

  3. Nicoll, R. A. Science 241, 545–551 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Nicoll, R. A., Malenka, R. C. & Kauer, J. A. Physiol. Rev. 70, 513–565 (1991).

    Article  Google Scholar 

  5. Fuchs, P., Nicholls, J. G. & Ready, D, F. J. Physiol., Lond. 316, 203–233 (1981).

    Article  CAS  Google Scholar 

  6. Drapeau, P. & Sanchez-Armass, S. J. Neurosci. 8, 4718–4727 (1988).

    Article  CAS  Google Scholar 

  7. Drapeau, P., Melinyshyn, E. & Sanchez-Armass, S. J. Neurosci. 9, 2502–2508 (1989).

    Article  CAS  Google Scholar 

  8. Merz, D. & Drapeau, P. Proc. R. Soc. B248, 129–133 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Drapeau, P. Neuron 4, 875–882 (1990).

    Article  CAS  Google Scholar 

  10. Catarsi, S. & Drapeau, P. Neuron 8, 275–281 (1992).

    Article  CAS  Google Scholar 

  11. Kramer, R. H. Neuron 2, 335–341 (1990).

    Article  Google Scholar 

  12. O'Dell, T. J., Kandel, E. R. & Grant, S. G. N. Nature 353, 558–560 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Greenwald, I. & Rubin, G. M. Cell 68, 271–281 (1992).

    Article  CAS  Google Scholar 

  14. Cantley, L. C. et al. Cell 64, 281–302 (1991).

    Article  CAS  Google Scholar 

  15. Hamill, O. P. et al. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  16. Nishizuka, Y. Nature 334, 661–665 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Atashi, J. R. et al. Neuron 8, 831–842 (1992).

    Article  CAS  Google Scholar 

  18. Qu, Z., Moritz, E. & Huganir, R. L. Neuron 2, 367–378 (1990).

    Article  Google Scholar 

  19. Wallace, B. G., Qu, Z. & Hunanir, R. L. Neuron 6, 869–878 (1991).

    Article  CAS  Google Scholar 

  20. Cohen, M. W., Rodriguez-Marin, E. & Wilson, E. M. J. Neurosci. 7, 2849–2861 (1987).

    Article  CAS  Google Scholar 

  21. Bloch, R. J. & Pumplin, D. W. Am. J. Physiol. 254, C345–c364 (1988).

    Article  CAS  Google Scholar 

  22. Katz, B. & Miledi, R. J. Physiol., Lond. 224, 665–699 (1972).

    Article  CAS  Google Scholar 

  23. Neher, E. & Sakmann, B. J. Physiol., Lond. 258, 705–729 (1976).

    Article  CAS  Google Scholar 

  24. Mishina, M. et al. Nature 321, 406–411 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Witzemann, V., Brenner, H.-R. & Sakmann, B. J. Cell Biol. 114, 125–141 (1991).

    Article  CAS  Google Scholar 

  26. Drapeau, P. & Sanchez-Armass, S. J. Neurobiol. 20, 312–325 (1989).

    Article  CAS  Google Scholar 

  27. Purves, D. & Lichtman, J. W. Principles of Neural Development (Sinauer, Sunderland, MA, 1985).

    Google Scholar 

  28. Shatz, C. J. Neuron 5, 745–756 (1990).

    Article  CAS  Google Scholar 

  29. Dietzel, I. D., Drapeau, P. & Nicholls, J. G. J. Physiol., Lond. 372, 191–205 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catarsi, S., Drapeau, P. Tyrosine kinase-dependent selection of transmitter responses induced by neuronal contact. Nature 363, 353–355 (1993). https://doi.org/10.1038/363353a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363353a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing