Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global climate change and terrestrial net primary production

Abstract

A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric C02 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of C02 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by C02, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Watson, R. T., Filho, L. G. M., Sanhueza, E. & Janetos, A. in Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment (eds Houghton, J. T. et al.) 25–46 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  2. Mitchell, J. F. B., Manabe, S., Meleshko, V. & Tokioka, T. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T. et al.) 131–172 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  3. Melillo, J. M., Callaghan, T. V., Woodward, F. I., Salati, E. & Sinha, S. K. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T. et al.) 283–310 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  4. Agren, G. I., McMurtrie, R. E., Parton, W. J., Pastor, J. & Shugart, H. H. Ecol. Applic. 1, 118–138 (1991).

    Article  Google Scholar 

  5. Lieth, H. in Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 237–263 (Springer, New York, 1975).

    Google Scholar 

  6. Esser, G. Tellus 39B, 245–260 (1987).

    ADS  CAS  Article  Google Scholar 

  7. Esser, G. in Soils and the Greenhouse Effect (ed. Bouwman, A. F.) 249–261 (Wiley, Chichester, 1990).

    Google Scholar 

  8. McGuire, A. D. et al. Clim. Change (in the press).

  9. Schimel, D. S., Parton, W. J., Kittel, T. G. F., Ojima, D. S. & Cole, C. V. Clim. Change 17, 13–25 (1990).

    ADS  Article  Google Scholar 

  10. Burke, I. C. et al. BioScience 41, 685–692 (1991).

    Article  Google Scholar 

  11. Running, S. W. & Nemani, R. R. Clim. Change 19, 349–368 (1991).

    ADS  CAS  Article  Google Scholar 

  12. McGuire, A. D. et al. Globl biogeochem. Cycles 6, 101–124 (1992).

    ADS  CAS  Article  Google Scholar 

  13. Emanuel, W. R., Shugart, H. H. & Stevenson, M. P. Clim. Change 7, 29–43 (1985).

    ADS  Article  Google Scholar 

  14. Prentice, K. C. J. geophys. Res. 95 (D8), 11811–11830 (1990).

    ADS  Article  Google Scholar 

  15. Woodward, F. I. & McKee, I. F. Envir. Int. 17, 535–546 (1991).

    Article  Google Scholar 

  16. Prentice, I. C. et al. J. Biogeogr. 19, 117–134 (1992).

    Article  Google Scholar 

  17. Smith, T. M., Leemans, R. & Shugart, H. H. Clim. Change 21, 367–384 (1992).

    ADS  CAS  Article  Google Scholar 

  18. Raich, J. W. et al. Ecol. Applic. 1, 399–429 (1991).

    CAS  Article  Google Scholar 

  19. Kimball, B. A. Agronomy J. 75, 779–788 (1975).

    Article  Google Scholar 

  20. Gates, D. M. in Direct Effects of Increasing Carbon Dioxide on Vegetation, Report DOE/ER-0238 (eds Strain, B. R. & Cure, J. D.) 171–184 (US Department of Energy, Washington DC, 1985).

    Google Scholar 

  21. White, F. Vegetation of Africa (UNESCO, Paris, 1981).

    Google Scholar 

  22. Institute of Geography of the Siberian Department of USSR Academy of Sciences, Botanical Institute of USSR Academy of Sciences & Moscow State University Geography Department Vegetation of the USSR (GVGK, Minsk, 1990).

  23. Hou, H. Y. et al. Vegetation Map of China (Map Publisher of the People's Republic of China, Beijing, 1979).

    Google Scholar 

  24. Matthews, E. J. Clim. Appl. Meteorol. 22, 474–487 (1983).

    ADS  Article  Google Scholar 

  25. Olson, J. S., Watts, J. A. & Allison, L. J. Carbon in Live Vegetation of Major World Ecosystems, Environmental Sciences Division Publication No. 1997 (Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1983).

  26. Moscow State University Geographical Department Geographical Belts and Zonal Types of the Landscapes of the World Map (GVGK, Moscow, 1988).

  27. Australian Surveying and Land Information Group Vegetation. Atlas of Australian Resources, Third Series, Vol. 6 (Commonwealth of Australia, Canberra, 1990).

  28. Rowe, J. S. Forest Regions of Canada Publ. 1300 (Department of Fisheries and the Environment, Can. Forest Serv., Ottawa, 1972).

  29. Joint Federal-State Land Use Planning Commission for Alaska Major Ecosystems of Alaska (US Geological Survey, Fairbanks, Alaska, 1973).

  30. Kuchler, A. W. Potential Natural Vegetation of the Conterminous United States (American Geographical Society, New York, New York, 1964).

    Google Scholar 

  31. UNESCO Vegetation Map of South America (UNESCO, Paris, 1981).

  32. Vorosmarty, C. J. et al. Globl biogeochem. Cycles 3, 241–265 (1989).

    ADS  Article  Google Scholar 

  33. Deevey, E. S. Jr Scient. Am. 203, 195–204 (1960).

    Article  Google Scholar 

  34. Whittaker, R. H. Communities and Ecosystems (Macmillan, New York, 1970).

    Google Scholar 

  35. Olson, J. S. in Temperate Forest Ecosystems (ed. Reichle, D. E.) 226–241 (Springer, New York, 1970).

    Google Scholar 

  36. Bazilevich, N. I., Rodin, L. E. & Rozov, N. N. Untersuchungen der Biologischen Produktivitat in Geographischer Sicht (5th Tagung Geogr. Ges., Leningrad, 1970).

    Google Scholar 

  37. Study of Critical Environmental Problems (SCEP) Man's Impact on the Global Environment (MIT Press, Cambridge, Massachusetts, 1970).

  38. Golley, F. B. in Ecosystem Structure and Function. Ann. Biol. Colloq. 31 (ed. Wiens, J. A.) 69–70 (Oregon State University, Corvallis, Oregon, 1972).

    Google Scholar 

  39. Whittaker, R. H. & Likens, G. E. Hum. Ecol. 1, 357–369 (1973).

    Article  Google Scholar 

  40. Whittaker, R. H. & Likens, G. E. in Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 305–328 (Springer, New York, 1975).

    Book  Google Scholar 

  41. Ajtay, G. L., Ketner, P. & Duvigneaud, P. in The Global Carbon Cycle SCOPE 13 (eds Bolin, B., Degens, E. T., Kempe, S. & Ketner, P.) 129–182 (Wiley, Chichester, 1979).

    Google Scholar 

  42. Heimann, M. & Keeling, C. D. in Aspects of Climate Variability in the Pacific and Western Americas, Geophysical Monograph 55 (ed. Peterson, D. H.) 237–275 (Amer. Geophys. Union, Washington DC, 1989).

    Google Scholar 

  43. Schlesinger, W. H. Biogeochemistry: An Analysis of Global Change (Academic, San Diego, California, 1991).

    Google Scholar 

  44. Paul, E. A. & Clark, F. E. Soil Microbiology and Biochemistry (Academic, San Diego, California, 1989).

    Book  Google Scholar 

  45. Jenne, R. L. in Global Climate Change: Implications, Challenges and Mitigation Measures (eds Majumdar et al.) 145–164 (Pennsylvania Academy of Sciences, Easton, Pennsylvania, 1992).

    Google Scholar 

  46. Willmot, C. J., Rowe, C. M. & Philpot, W. D. J. Am. Cart 12, 5–16 (1985).

    Google Scholar 

  47. Adams, R. M. et al. Nature 345, 219–224 (1990).

    ADS  Article  Google Scholar 

  48. Vitousek, P. M. & Howarth, R. W. 1991. Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  49. Wong, S. C. Oecologia 44, 68–74 (1979).

    ADS  CAS  Article  Google Scholar 

  50. Larigauderie, A., Hilbert, D. W. & Oechel, W. C. Oecologia 77, 544–549 (1988).

    ADS  Article  Google Scholar 

  51. Goudriaan, J. & de Ruiter, H. E. Neth. J. agric. Sci. 31, 157–169 (1983).

    CAS  Google Scholar 

  52. Zangerl, A. R. & Bazzaz, F. A. Oecologia 62, 412–417 (1984).

    ADS  CAS  Article  Google Scholar 

  53. Brown, K. & Higginbotham, K. O. Tree Physiol. 2, 223–232 (1986).

    Article  Google Scholar 

  54. Oberbauer, S. F., Sionit, N., Hastings, S. J. & Oechel, W. C. Can. J. Bot. 64, 2993–2998 (1986).

    CAS  Article  Google Scholar 

  55. Marks, S. & Clay, K. Oecologia 84, 207–214 (1990).

    ADS  Article  Google Scholar 

  56. Johnson, R. H. & Lincoln, D. E. Oecologia 87, 127–134 (1991).

    ADS  Article  Google Scholar 

  57. Mooney, H. A., Drake, B. G., Luxmoore, R. J., Oechel, W. C. & Pitelka, L. F. BioScience 41, 96–104 (1991).

    Article  Google Scholar 

  58. Sanchez, P. A., Bandy, E. E., Villachica, J. H. & Nicholaides, J. J. Science 216, 821–827 (1982).

    ADS  CAS  Article  Google Scholar 

  59. Long, S. P. & Hutchin, P. R. Ecol. Applic. 1, 139–156 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melillo, J., McGuire, A., Kicklighter, D. et al. Global climate change and terrestrial net primary production. Nature 363, 234–240 (1993). https://doi.org/10.1038/363234a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363234a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing