Letter | Published:

Ferrous iron oxidation by anoxygenic phototrophic bacteria

Nature volume 362, pages 834836 (29 April 1993) | Download Citation

Subjects

Abstract

NATURAL oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4–6 or a photobiological process involving two photosystems7–9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10–14. The reducing power of ferrous iron increases dramatically at pH values higher than 2–3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E′0 = -0.236V) or Fe(OH)3 + HCO3FeCO3 (E′0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    in Bacterial Energy Transduction (ed. Anthony, C.) 183–230 (Academic, London, 1988).

  2. 2.

    & Aquatic Chemistry 2nd ed (Wiley-lnterscience, New York, 1981).

  3. 3.

    & Iron Oxides in the Laboratory (VCH. Weinheim. 1991).

  4. 4.

    Nature 276, 807–808 (1978).

  5. 5.

    , & Nature 303, 163–164 (1983).

  6. 6.

    Nature 320, 352–354 (1986).

  7. 7.

    in Microbial Mats: Stromatolites (eds Cohen, Y., Castenholz, R. W. & Halvorson, H. O.) 449–453 (Liss, New York, 1984).

  8. 8.

    Nature 329, 710–711 (1987).

  9. 9.

    in Microbial Mats (eds Cohen. Y. & Rosenberg, E.) 22–36 (Am. Soc. Microbiol., Washington, 1990).

  10. 10.

    A. Rev. Earth Planet. Sci. 3, 213–249 (1975).

  11. 11.

    in The Early History of the Earth (ed. Windley, B. F.) 525–535 (Wiley, London, 1976).

  12. 12.

    & J. Geol. 89, 169–183 (1981).

  13. 13.

    & in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 147–158 (Cambridge Univ. Press, Cambridge, 1992).

  14. 14.

    , & in The Proterozoic Biosphere (eds Schopf, J, W. & Klein, C.) 159–163 (Cambridge Univ. Press, Cambridge, 1992).

  15. 15.

    & Solutions, Minerals and Equilibria (Harper & Row, New York, 1965).

  16. 16.

    & in Global Chemical Cycles and their Alterations by Man (ed. Stumm, W.) 45–59 (Dahlem Konferenzen, Berlin, 1977).

  17. 17.

    in Microbial Geochemistry (ed. Krumbein, W. E.) 91–124 (Blackwell, Oxford, 1983).

  18. 18.

    & in The Photosynthetic Bacteria (eds Clayton, R. K. & Sistrom, W. R.) 525–570 (Plenum, New York, 1978).

  19. 19.

    & in The Prokaryotes Vol. 4 (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 3352–3378 (Springer. New York, 1992).

  20. 20.

    Int. J. syst. Bact. 28, 283–288 (1978).

  21. 21.

    , , & Appl. environ. Microbiol 51, 398–407 (1986).

  22. 22.

    in Bergey's Manual of Systematic Bacteriology Vol. 3 (eds Staley, J. T., Bryant, M. P., Pfennig, N. & Holt, J. G.) 1650–1651 (Williams & Wilkins. Baltimore, 1989).

  23. 23.

    Microbiol. Rev. 55, 259–287 (1991).

  24. 24.

    & Appl. environ. Microbiol. 58, 439–443 (1992).

  25. 25.

    Analyt. Chem. 42, 779–781 (1970).

  26. 26.

    & Appl. environ. Microbiol. 51, 683–689 (1986).

  27. 27.

    , , & J. biol. Chem. 193, 265–275 (1951).

Download references

Author information

Affiliations

  1. Max-Planck-lnstitut für Marine Mikrobiologie, Fahrenheitstrasse 1, D-2800 Bremen, Germany

    • Friedrich Widdel
    • , Armin Ehrenreich
    •  & Bernhard Assmus
  2. Fakultät für Biologie der Universität Konstanz, Postfach 5560, D-7750 Konstanz, Germany

    • Sylvia Schnell
    • , Silke Heising
    •  & Bernhard Schink

Authors

  1. Search for Friedrich Widdel in:

  2. Search for Sylvia Schnell in:

  3. Search for Silke Heising in:

  4. Search for Armin Ehrenreich in:

  5. Search for Bernhard Assmus in:

  6. Search for Bernhard Schink in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/362834a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.