Letter | Published:

Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event

Nature volume 362, pages 527529 (08 April 1993) | Download Citation

Subjects

Abstract

THE warming at the end of the last glaciation was characterized by a series of abrupt returns to glacial climate, the best-known of which is the Younger Dryas event1. Despite much study of the causes of this event and the mechanisms by which it ended, many questions remain unresolved1. Oxygen isotope data from Greenland ice cores2–4 suggest that the Younger Dryas ended abruptly, over a period of about 50 years; dust concentrations2,4 in these cores show an even more rapid transition (20 years). This extremely short timescale places severe constraints on the mechanisms underlying the transition. But dust concentrations can reflect subtle changes in atmospheric circulation, which need not be associated with a large change in climate. Here we present results from a new Greenland ice core (GISP2) showing that snow accumulation doubled rapidly from the Younger Dryas event to the subsequent Preboreal interval, possibly in one to three years. We also find that the accumulation-rate change from the Oldest Dryas to the Bø11ing/Allerød warm period was large and abrupt. The extreme rapidity of these changes in a variable that directly represents regional climate implies that the events at the end of the last glaciation may have been responses to some kind of threshold or trigger in the North Atlantic climate system.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & The Last Deglaciation: Absolute and Radiocarbon Chronologies, NATO ASI Series I, Vol. 2 (Springer, Berlin, 1992).

  2. 2.

    , & Nature 339, 532–534 (1989).

  3. 3.

    et al. Nature 359, 311–313 (1992).

  4. 4.

    et al. Nature (in the press).

  5. 5.

    U.S. Army Cold Regions Res. Engng Lab. Res. Rep. 77 (1967).

  6. 6.

    , , & Geophys. Res. Lett. 17, 2393–2396 (1990).

  7. 7.

    J. Glaciol. 25, 359–372 (1980).

  8. 8.

    et al. J. Glaciol. 38, 325–332 (1993).

  9. 9.

    in Isotopes and Impurities in Snow and Ice IAHS Publ 118, 297–301 (1977).

  10. 10.

    , , & Geophys. Res. Lett. 18, 1241–1244 (1991).

  11. 11.

    , , , & Quat. Res. (in the press).

  12. 12.

    , , & Boreas 3, 109–128 (1974).

  13. 13.

    Boreas 8, 89–117 (1979).

  14. 14.

    Paleoceanography 5, 937–948 (1990).

  15. 15.

    , , & in The Last Deglaciation: Absolute and Radiocarbon Chronologies NATO ASI Series I, Vol. 2 (eds Bard, E. & Broecker, W. S.) 103–110 (Springer, Berlin, 1992).

  16. 16.

    , & J. Glaciol. 38, 162–168 (1992).

  17. 17.

    & in The Physical Basis of Ice Sheet Modelling (eds Waddington, E. D. & Walder, J. S.) IAHS Publ. 170, 31–43 (1987).

  18. 18.

    J. Glaciol. 38, 245–256 (1992).

  19. 19.

    in The Last Deglaciation: Absolute and Radiocarbon Chronologies NATO ASI Series I, Vol. 2 (eds Bard, E. & Broecker, W. S.) 173–181 (Springer, Berlin).

  20. 20.

    et al. Quat. Res. 31, 135–150 (1989).

  21. 21.

    Tellus 16, 436–468 (1964).

  22. 22.

    , & Radiocarbon 28, 284–291 (1986).

  23. 23.

    et al. in The Last Deglaciation: Absolute and Radiocarbon Chronologies NATO ASI Series I, Vol. 2 (eds Bard, E. & Broecker, W. S.) 69–80 (Springer, Berlin, 1992).

  24. 24.

    & Radiocarbon 28(2B), 961–967 (1986).

  25. 25.

    & in The Last Deglaciation: Absolute and Radiocarbon Chronologies NATO ASI Series I, Vol 2 (eds Bard, E. & Broecker, W. S.) 3–11 (Springer, Berlin, 1992).

  26. 26.

    , , & in The Last Deglaciation: Absolute and Radiocarbon Chronologies NATO ASI Series I, Vol. 2 (eds Bard, E. & Broecker, W. S.) 25–44 (Springer, Berlin, 1992).

  27. 27.

    , & in The Last Deglaciation: Absolute and Radiocarbon Chronologies NATO ASI Series I, Vol. 2 (eds Bard, E, & Broecker, W. S.) 81–101 (Springer, Berlin, 1992).

Download references

Author information

Affiliations

  1. Earth System Science Center and Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

    • R. B. Alley
    •  & C. A. Shuman
  2. Snow and Ice Branch, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire 03755, USA

    • D. A. Meese
    •  & A. J. Gow
  3. Desert Research Institute, University of Nevada System, Reno, Nevada 89506, USA

    • K. C. Taylor
  4. Quaternary Isotope Laboratory, University of Washington, Seattle, Washington 98195, USA

    • P. M. Grootes
  5. Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309, USA

    • J. W. C. White
  6. Department of Physics, University at Buffalo, Amherst, New York 14260, USA

    • M. Ram
  7. Geophysics Program, University of Washington, Seattle, Washington 98195, USA

    • E. D. Waddington
  8. Glacier Research Group, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire 03824, USA

    • P. A. Mayewski
    •  & G. A. Zielinski

Authors

  1. Search for R. B. Alley in:

  2. Search for D. A. Meese in:

  3. Search for C. A. Shuman in:

  4. Search for A. J. Gow in:

  5. Search for K. C. Taylor in:

  6. Search for P. M. Grootes in:

  7. Search for J. W. C. White in:

  8. Search for M. Ram in:

  9. Search for E. D. Waddington in:

  10. Search for P. A. Mayewski in:

  11. Search for G. A. Zielinski in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/362527a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.