Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two circadian oscillators in one cell

Abstract

A CIRCADIAN clock, which continues to oscillate in constant conditions, is almost ubiquitous in eukaryotes as well as some prokaryotes1. This class of biological oscillators drives daily rhythms as diverse as photosynthesis in plants2 and the sleep-wake cycle in man3 and enables organisms to anticipate environmental changes or segregate in time-incompatible processes4. Circadian oscillators share many properties, suggesting that the clock is a single mechanism, preserved throughout evolution, which is capable of controlling all the different circadian functions. Here we show that two rhythms in a unicellular organism can, under certain experimental conditions, run independently, and thus each rhythm must be controlled by its own distinct oscillator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hastings, J. W., Rusak, B. & Boulos, Z. in Neural and Integrative Animal Physiology (ed. Prosser, C. L.) 435–546 (Wiley-Liss, Cambridge, 1991).

    Google Scholar 

  2. Hastings, J. W., Astrachan, L. & Sweeney, B. M. J. gen. Physiol. 45, 69–76 (1961).

    Article  CAS  Google Scholar 

  3. Wever, R. The Circadian System of Man (Springer, Berlin, 1979).

    Book  Google Scholar 

  4. Huang, T.-C., Tu, J., Chow, T.-L. & Chen, T.-H. Pl. Physiol. 92, 531–533 (1990).

    Article  CAS  Google Scholar 

  5. Hastings, J. W. & Sweeney, B. M. Biol. Bull. 115, 440–458 (1958).

    Article  Google Scholar 

  6. Roenneberg, T., Colfax, G. N. & Hastings, J. W. J. biol. Rhythms 4, 201–216 (1989).

    Article  CAS  Google Scholar 

  7. Roenneberg, T. & Hastings, J. W. in Oscillations and Morphogenesis (ed. Rensing, L.) 399–412 (Dekker, New York, 1992).

    Google Scholar 

  8. Morse, D., Fritz, L. & Hastings, J. W. Trends biochem. Sci. 15, 262–265 (1990).

    Article  CAS  Google Scholar 

  9. Halberg, F., Cornelissen, G. & Broda, H. Cell Biophysics 8, 69–85 (1985).

    Google Scholar 

  10. Hoist, E.v. Ergebn. Physiol. 42, 228–306 (1939).

    Article  Google Scholar 

  11. Aschoff, J. in Biological Rhythms (ed. Aschoff, J.) 81–93 (Plenum, New York. 1981).

    Book  Google Scholar 

  12. Krasnow, R. et al. J. comp. Physiol. 138, 19–26 (1980).

    Article  Google Scholar 

  13. von der Heyde, F., Wilkens, A. & Rensing, L. J. biol. Rhythms 7, 115–124 (1992).

    Article  CAS  Google Scholar 

  14. McMurry, L. & Hastings, J. W. Science 175, 1137–1139 (1972).

    Article  ADS  CAS  Google Scholar 

  15. Broda, H., Gooch, V. D., Taylor, W. R., Aiuto, N. & Hastings, J. W. J. biol. Rhythms 1, 251–263 (1986).

    Article  CAS  Google Scholar 

  16. Aschoff, J. Science 148, 1427–1432 (1965).

    Article  ADS  CAS  Google Scholar 

  17. Aschoff, J., Gerecke, U. & Wever, R. Jap. J. Physiol. 17, 450–457 (1967).

    Article  CAS  Google Scholar 

  18. Daan, S., Beersma, D. G. M. & Borbely, A. A. Am. J. Physiol. 246, R161–R178 (1984).

    CAS  PubMed  Google Scholar 

  19. Hastings, J. W. & Sweeney, B. M. Proc. natn. Acad. Sci. U.S.A. 43, 804–811 (1957).

    Article  ADS  CAS  Google Scholar 

  20. Edmunds, L. N. Jr Cellular and Molecular Bases of Biological Clocks: Models and Mechanisms of Circadian Time Keeping (Springer, New York, 1988).

    Google Scholar 

  21. Schweiger, E., Wallraff, H. G. & Schweiger, H. G. Science 146, 658–659 (1964).

    Article  ADS  CAS  Google Scholar 

  22. Schweiger, E., Wallraff, H. G. & Schweiger, H. G. Z Naturforsch. 19c, 499–505 (1964).

    Article  Google Scholar 

  23. Schwartz, R. M. & Dayhoff, M. D. Science 199, 395–403 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Margulis, L. Symbiosis in Cell Evolution (Freeman, New York, 1091).

    Google Scholar 

  25. Taylor, W., Wilson, S., Presswood, R. P. & Hastings, J. W. J. Interdiscipl. Cycle Res. 13, 71–79 (1982).

    Article  Google Scholar 

  26. Box, G. E. P. & Jenkins, G. M. Time Series Analysis—Forecasting and Control (Holden-Day, San Francisco, 1970).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roenneberg, T., Morse, D. Two circadian oscillators in one cell. Nature 362, 362–364 (1993). https://doi.org/10.1038/362362a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362362a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing