Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pituitary hormone FSH directs the CREM functional switch during spermatogenesis

Abstract

THE CREM (cyclic AMP-responsive element modulator) gene encodes multiple regulators of the cAMP-transcriptional response by alternative splicing1. A developmental switch in CREM expression occurs during spermatogenesis, whereby CREM function is converted from an antagonist to an activator (CREMτ; ref. 2) which accumulates to extremely high levels from the premeiotic spermatocyte stage onwards. To define the physiological mechanisms controlling the CREM developmental switch, we have hypophysectomized rats and observed the extinction of CREMτ expression in testis, thereby demonstrating a central role of the pituitary-hypothalamic axis. We then used the seasonal-dependent modulation of spermatogenesis in hamsters to dissect the hormonal programme controlling this developmental process. By this approach, combined with direct administration of pituitary-derived hormones, we have established that follicle-stimulating hormone (FSH) is responsible for the CREM switch. FSH appears to regulate CREM expression by alternative polyadenylation, which results in a dramatic enhancement of transcript stability.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Foulkes, N. S., Borrelli, E. & Sassone-Corsi, P. Cell 64, 739–749 (1991).

    Article  CAS  Google Scholar 

  2. Foulkes, N. S., Mellström, B., Benusiglio, E. & Sassone-Corsi, P. Nature 355, 80–84 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Santen, R. J. in Endocrinology and Metabolism (eds Felig, P., Baxter, J. D., Broadus, A. E. & Frohman, L. A.) 821–905 (McGraw-Hill, New York, 1987).

    Google Scholar 

  4. Crowley, W. F. Jr et al. Rec. Progr. Horm. Res. 47, 27–67 (1991).

    MathSciNet  CAS  PubMed  Google Scholar 

  5. Rubin, M. R., Toth, L. E., Patel, M. D., D'Eustacchio, P. & Nguyen-Huu, M. C. Science 233, 663–667 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Reiter, R. J. Endocrin. Rev. 1, 109–131 (1980).

    Article  CAS  Google Scholar 

  7. Desjardins, C., Ewing, L. L. & Johnson, B. H. Endocrinology 89, 791–800 (1971).

    Article  CAS  Google Scholar 

  8. Pévet, P. Reprod. Nutr. Dev. 28, 575–578 (1988).

    Article  Google Scholar 

  9. Bartke, A. in The Hamster Reproduction and Behavior (ed. Siegel, M. I.) 73–98 (Plenum, New York, 1985).

    Google Scholar 

  10. Jetton, A. E., Fallest, P. C., Dahl, K. D., Schwartz, N. B. & Turek, F. W. Endocrinology 129, 1025–1032 (1991).

    Article  CAS  Google Scholar 

  11. Shaw, G. & Kamen, R. Cell 46, 659–667 (1986).

    Article  CAS  Google Scholar 

  12. Habener, J. Molec. Endocrinol. 4, 1087–1094 (1990).

    Article  CAS  Google Scholar 

  13. Foulkes, N. S. & Sassone-Corsi, P. Cell 68, 411–414 (1992).

    Article  CAS  Google Scholar 

  14. Klemcke, H. G., Vensickle, M., Bartfe, SA., Amador, A. & Chandrashekar, V. Biol. Repr. 37, 356–370 (1987).

    Article  CAS  Google Scholar 

  15. Jégou, B. et al. in Spermatogenesis—Fertilization—Contraception (eds Nieschlag, E. & Habenicht, U.-F.) 57–95 (Schering Foundation Workshop 4, Springer, 1992).

    Book  Google Scholar 

  16. Johnson, P. A., Peschon, J. J., Yelick, P. C., Palmiter, R. D. & Hecht, N. Biochem. biophys. Acta 950, 45–53 (1988).

    CAS  PubMed  Google Scholar 

  17. Raynaud, F. & Pévet, P. J. neur. Transm. 83, 235–242 (1991).

    Article  CAS  Google Scholar 

  18. Vulliamy, T. J. et al. Proc. natn. Acad. Sci. U.S.A. 85, 5171–5175 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Marzluff, W. F. & Huang, R.-C. C. in Transcription and Translation—A Practical Approach (eds Hames, B. D. & Higgins, S. J.) (IRL, Oxford, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foulkes, N., Schlotter, F., Pévet, P. et al. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 362, 264–267 (1993). https://doi.org/10.1038/362264a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362264a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing