Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck

Abstract

THE Src homology-2 (SH2) domains are modules of about 100 amino-acid residues that are found in many intracellular signal-transduction proteins1,2. They bind phosphotyrosine-containing sequences with high affinity and specificity1–4, recognizing phosphotyrosine in the context of the immediately adjacent polypeptide sequence3–12. The protein p56lck (Lck) is a Src-like, lymphocyte-specific tyrosine kinase13–15. A phosphopeptide library screen has recently been used to deduce an 'optimal' binding sequence for the Lck SH2 domain16. There is selectivity for the residues Glu, Glu and lie in the three positions C-terminal to the phosphotyrosine. An 11-residue phosphopeptide derived from the hamster polyoma middle-T antigen, EPQpYEEIPIYL, binds with an approximately 1 nM dissociation constant to the Lck SH2 (ref. 17), an affinity equivalent to that of the tightest known SH2–phosphopeptide complex. We report here the high-resolution crystallographic analysis of the Lck SH2 domain in complex with this phosphopeptide. Recent crystallographically derived structures of the Src SH2 domain in complex with low-affinity peptides18, which do not contain the EEI consensus, and NMR-derived structures of unliganded Abl (ref. 19) and p85 (ref. 20) SH2 domains have revealed the conserved fold of the SH2 domain and the properties of a phosphotyrosine binding pocket. Our high–affinity complex shows the presence of a second pocket for the residue (pY + 3) three positions C-terminal to the phosphotyrosine (pY). The peptide is anchored by insertion of the pY and pY + 3 side chains into their pockets and by a network of hydrogen bonds to the peptide main chain. In the low-affinity phosphopeptide/Src complexes18, the pY + 3 residues do not insert into the homologous binding pocket and the peptide main chain remains displaced from the surface of the domain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Koch, A., Anderson, D., Moran, M. F., Ellis, C. & Pawson, T. Science 252, 668–674 (1991).

    ADS  CAS  Article  Google Scholar 

  2. Pawson, T. & Gish, G. D. Cell 71, 359–362 (1992).

    CAS  Article  Google Scholar 

  3. Cantley, L. C. et al. Cell 64, 281–302 (1991).

    CAS  Article  Google Scholar 

  4. Fantl, W. J. et al. Cell 69, 413–423 (1992).

    CAS  Article  Google Scholar 

  5. Kazlauskas, A. & Cooper, J. A. Cell 58, 1121–1133 (1989).

    CAS  Article  Google Scholar 

  6. Coughlin, S. R., Escobedo, J. A. & Williams, L. T. Science 243, 1191–1194 (1989).

    ADS  CAS  Article  Google Scholar 

  7. Kashishian, A., Kaslauskas, A. & Cooper, J. A. EMBO J. 11, 1373–1382 (1992).

    CAS  Article  Google Scholar 

  8. Felder, S. et al. Molec. cell. Biol. (in the press).

  9. Piccione, E. et al. Biochemistry (in the press).

  10. Escobedo, J. A., Kaplan, D. R., Kavanaugh, W. M., Turck, C. W. & Williams, L. T. Molec. cell. Biol. 11, 1125–1132 (1991).

    CAS  Article  Google Scholar 

  11. Auger, K. R., Carpenter, C. L., Shoelson, S. E., Piwnica-Worms, H. & Cantley, L. C. J. biol. Chem. 267, 5408 (1992).

    CAS  PubMed  Google Scholar 

  12. Backer, J. M. et al. EMBO J. 11, 3469–3479 (1992).

    CAS  Article  Google Scholar 

  13. Marth, J. D. et al. Cell 43, 393–404 (1985).

    CAS  Article  Google Scholar 

  14. Perlmutter, R. M. et al. J. Cell Biochem. 38, 117–126 (1988).

    CAS  Article  Google Scholar 

  15. Sefton, B. M. Oncogene 6, 683–686 (1991).

    CAS  PubMed  Google Scholar 

  16. Songyang, Z. et al. Cell (in the press).

  17. Payne, G., Shoelson, S. E., Gish, G., Pawson, T. & Walsh, C. T. Proc. natn. Acad. Sci. U.S.A. (in the press).

  18. Waksman, G. et al. Nature 358, 646–653 (1992).

    ADS  CAS  Article  Google Scholar 

  19. Overduin, M., Mayer, B. J., Rios, C. B., Baltimore, D. & Cowburn, D. Cell 70, 697–704 (1992).

    CAS  Article  Google Scholar 

  20. Booker, G. W. et al. Nature 358, 684–687 (1992).

    ADS  CAS  Article  Google Scholar 

  21. Russell, R. B., Breed, J. & Barton, G. J. FEBS Lett. 304, 15–20 (1992).

    CAS  Article  Google Scholar 

  22. Williams, K. P. & Shoelson, S. E. J. biol. Chem. (in the press).

  23. Janin, J. & Chothia, C. J. biol. Chem. 265, 16027–16030 (1990).

    CAS  PubMed  Google Scholar 

  24. Madden, D. R., Gorga, J. C., Strominger, J. L. & Wiley, D. C. Cell 70, 1035–1048 (1992).

    CAS  Article  Google Scholar 

  25. Perego, R., Ron, D. & Kruh, G. D. Oncogene 6, 1899–1902 (1991).

    CAS  PubMed  Google Scholar 

  26. Okada, M., Nada, S., Yamanishi, Y., Yamamoto, T. & Nakagawa, H. J. Biol. Chem. 266, 24249 (1991).

    CAS  PubMed  Google Scholar 

  27. Chan, A. C., Iwashima, M., Turck, C. W. & Weiss, A. Cell 71, 649–662 (1992).

    CAS  Article  Google Scholar 

  28. Taniguchi, T. et al. J. biol. Chem. 266, 15790–15796 (1991).

    CAS  PubMed  Google Scholar 

  29. Waksman, G. et al. Cell (in the press).

  30. Mayer, B. J., Jackson, P. K., Van Etten, R. A. & Baltimore, D. Molec. cell. Biol. 12, 609–618 (1992).

    CAS  Article  Google Scholar 

  31. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, F. W. Meth Enzym. 185, 60–89 (1990).

    CAS  Article  Google Scholar 

  32. Leslie, A. G. W. MOSFLM: A Program Package for Processing Rotation Data Collected on Film or Image Plates (MRC Laboratory of Molecular Biology, Cambridge, UK, 1992).

    Google Scholar 

  33. Fox, G. C. & Holmes, K. C. Acta crystallogr. A34, 886–891 (1966).

    Article  Google Scholar 

  34. Rossmann, M. G. The Molecular Replacement Method: A Collection of Papers on the Use of Non-crystallographic Symmetry (Gordon and Breach, New York, 1972).

    Google Scholar 

  35. Brünger, A. T. Acta crystallogr. A46, 46–57 (1990).

    Article  Google Scholar 

  36. Brünger, A. T. X-PLOR, Version 3.0: A System for Crystallography and NMR (Yale Univ., CT, 1992).

    Google Scholar 

  37. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    CAS  Article  Google Scholar 

  38. Brünger, A. T. Nature 355, 472–475 (1992).

    ADS  Article  Google Scholar 

  39. Lee, B. K. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eck, M., Shoelson, S. & Harrison, S. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362, 87–91 (1993). https://doi.org/10.1038/362087a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362087a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing