Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum interference in a mesoscopic superconducting loop

Abstract

THE classical superconducting quantum interference device (SQUID) is based on the Josephson effect1, and usually consists of a macroscopic superconducting loop with two artificial weak links (Josephson junctions) through which the supercurrent passes by quantum-mechanical tunnelling. Fink et al.2 proposed a new type of SQUID based on a homogeneous mesoscopic superconducting loop, in which interference between the supercurrents passing through the two halves of the ring results in a critical current that varies with the applied magnetic field in an oscillatory manner. Here we describe the experimental observation of these oscillations in a mesoscopic superconducting aluminum loop without artificial weak links. In this new type of quantum interferometer, 'weak-link' regions with a strongly reduced superconducting order parameter appear periodically at half-integer magnetic flux quanta owing to the interplay between the shielding and transport currents in the loop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Josephson, B. D. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  Google Scholar 

  2. Fink, H. J., López, A. & Maynard, R. Phys. Rev. B26, 5237–5240 (1982).

    Article  ADS  Google Scholar 

  3. Fink, H. J., Grünfeld, V. & López, A. Phys. Rev. B35, 35–37 (1987).

    Article  ADS  CAS  Google Scholar 

  4. de Gennes, P. G. C. R. Acad. Sci. Ser. II 292, 279–282 (1981).

    Google Scholar 

  5. Alexander, S. Phys. Rev. B27, 1541–1557 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  6. Fink, H. J., Loo, J. & Roberts, S. M. Phys. Rev. B37, 5050–5057 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Vloeberghs, H., Moshchalkov, V. V., Van Haesendonck, C., Jonckheere, R. & Bruynseraede, Y. Phys. Rev. Lett. 69, 1268–1271 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Moshchalkov, V. V. et al. Phys. Script. T45, 226–229 (1992).

    Article  ADS  Google Scholar 

  9. Little, W. A. & Parks, R. D. Phys. Rev. Lett. 9, 9–13 (1962).

    Article  ADS  Google Scholar 

  10. Tinkham, M. Phys. Rev. 129, 2413–2422 (1963).

    Article  ADS  Google Scholar 

  11. Arutyunyan, R. M. & Zharkov, G. F. Zh. eksp. teor. Fiz. 78, 1530–1542 (1980); (Engl. transl.) Sov. Phys. JETP 51, 768–774 (1980).

    ADS  Google Scholar 

  12. Muller, C. J., van Ruitenbeek, J. M. & de Jongh, L. J. Phys. Rev. Lett. 69, 140–143 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshchalkov, V., Gielen, L., Dhallé, M. et al. Quantum interference in a mesoscopic superconducting loop. Nature 361, 617–620 (1993). https://doi.org/10.1038/361617a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361617a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing