Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of a molecular chaperone from a thermophilic archaebacterium

Abstract

WE recently reported that a wide range of thermophilic archaebacteria have a novel ATPase complex which accumulates to high levels upon heat shock and may be a new type of molecular chaperone related to the chaperonins1. Striking similarities between the complex, referred to here as the 'thermosome', and the subsequently characterized chaperones TF55 of the thermophilic archaebacterium Sulfolobus shibatae2 and TCP-1 from eukaryotic cytosol2–5 suggest that these proteins belong to a single family. Here we determine the three-dimensional structure of the thermosome from Pyrodictium occultum by random conical tilt reconstruction from electron micrographs. The reconstruction reveals a complex consisting of two rings of eight subunits each, stacked face-to-face. The subunits are kidney-shaped and composed of at least two domains. In the centre of the thermosome is a large cavity of about 6.7 nm diameter; the opening of this cavity on each face of the complex is partially blocked by a mass which appears to be weakly connected to the eight-membered ring.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Phipps, B. M., Hoffmann, A., Stetter, K. O. & Baumeister, W. EMBO J. 10, 1711–1722 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Trent, J. D., Nimmesgern, E., Wall, J. S., Hartl, F.-U. & Horwich, A. L. Nature 354, 490–493 (1991).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Gao, Y., Thomas, J. O., Chow, R. L., Lee, G.-H. & Cowan, N. J. Cell 69, 1043–1050 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Lewis, V. A., Hynes, G. M., Zheng, D., Saibil, H. & Willison, K. Nature 358, 249–252 (1992).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Yaffe, M. B. et al. Nature 358, 245–248 (1992).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Gething, M.-J. & Sambrook, J. Nature 355, 33–45 (1992).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ellis, R. J. Nature 328, 378–379 (1987).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Nature 342, 884–889 (1989).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Hemmingsen, S. M. et al. Nature 333, 330–334 (1988).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ellis, R. J. & van der Vies, S. M. A. Rev. Biochem. 60, 321–347 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Ellis, R. J. Nature 358, 191 (1992).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Trent, J. D., Osipiuk, J. & Pinkau, T. J. Bact. 172, 1478–1484 (1990).

    CAS  Article  Google Scholar 

  13. 13

    Baumeister, W. et al. FEBS Lett. 241, 239–245 (1988).

    CAS  Article  Google Scholar 

  14. 14

    Ellis, R. J. Science 250, 954–959 (1990).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Gupta, R. S. Biochem. Int. 4, 833–841 (1990).

    Google Scholar 

  16. 16

    Radermacher, M. J. Electron Microsc. Techn. 9, 359–394 (1988).

    CAS  Article  Google Scholar 

  17. 17

    Zemlin, F. J. Electron Microsc. Techn. 11, 251–257 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Hutchinson, E. G., Tichelaar, W., Hofhaus, G., Weiss, H. & Leonard, K. R. EMBO J. 8, 1485–1490 (1989).

    CAS  Article  Google Scholar 

  19. 19

    Viitanen, P. V. et al. J. biol. Chem. 267, 695–698 (1992).

    CAS  PubMed  Google Scholar 

  20. 20

    Flaherty, K. M., DeLuca-Flaherty, C. & McKay, D. B. Nature 346, 623–628 (1990).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Rippmann, F., Taylor, W. R., Rothbard, J. B. & Green, N. M. EMBO J. 10, 1053–1059 (1991).

    CAS  Article  Google Scholar 

  22. 22

    Carrascosa, J. L., Abella, G., Marco, S. & Carazo, J. M. J. struct. Biol. 104, 2–8 (1990).

    CAS  Article  Google Scholar 

  23. 23

    Flynn, G. C., Pohl, J., Flocco, M. T. & Rothman, J. E. Nature 353, 726–730 (1991).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Martin, J. et al. Nature 352, 36–42 (1991).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Hartl, F.-U. EMBO J. 11, 4757–4765 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Creighton, T. E. Nature 352, 17–18 (1991).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Saibil, H., Dong, Z., Wood, S. & auf der Mauer, A. Nature 353, 25–26 (1991).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Viitanen, P. V. et al. Biochemistry 29, 5665–5671 (1990).

    CAS  Article  Google Scholar 

  29. 29

    Hegerl, R. & Altbauer, A. Ultramicroscopy 9, 109–116 (1982).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phipps, B., Typke, D., Hegerl, R. et al. Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361, 475–477 (1993). https://doi.org/10.1038/361475a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing