Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resistance to cadmium mediated by ubiquitin-dependent proteolysis

Abstract

CADMIUM is a potent poison for living cells. In man, chronic exposure to low levels of cadmium results in damage to kidneys and has been linked to neoplastic disease and ageing, and acute exposure can cause damage to a variety of organs and tissues1. Cadmium reacts with thiol groups and can substitute for zinc in certain proteins2, but the reason for its toxicity in vivo remains uncertain. In eukaryotes, an important selective proteolysis pathway for the elimination of abnormal proteins that are generated under normal or stress conditions is ATP-dependent and mediated by the ubiquitin system3–5. Substrates of this pathway are first recognized by ubiquitin-conjugating enzymes5–7 (or auxiliary factors) which covalently attach ubiquitin, a small and highly conserved protein, to specific internal lysine residues of proteolytic substrates. Ubiquitinated substrates are then degraded by the proteasome, a multisubunit protease complex8–10. Here we show that expression of this ubiquitin-dependent proteolysis pathway in yeast is activated in response to cadmium exposure and that mutants deficient in specific ubiquitin-conjugating enzymes are hypersensitive to cadmium. Moreover, mutants in the proteasome are hypersensitive to cadmium, suggesting that cadmium resistance is mediated in part by degradation of abnormal proteins. This indicates that a major reason for cadmium toxicity may be cadmium-induced formation of abnormal proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stoeppler, M. & Piscator, M. (eds) Cadmium (Springer, Berlin, 1985).

  2. Vallee, B. L. & Ulmer, D. A. Rev. Biochem. 41, 91–129 (1972).

    Article  CAS  Google Scholar 

  3. Finley, D. & Chau, V. A. Rev. Cell Biol. 7, 25–69 (1986).

    Article  Google Scholar 

  4. Hershko, A. Trends biochem. Sci. 16, 265–268 (1991).

    Article  CAS  Google Scholar 

  5. Jentsch, S. Trends Cell Biol. 2, 98–103 (1992).

    Article  CAS  Google Scholar 

  6. Jentsch, S., Seufert, W., Sommer, T. & Reins, H.-A. Trends biochem. Sci. 15, 195–198 (1990).

    Article  CAS  Google Scholar 

  7. Jentsch, S. A. Rev. Genet. 26, 177–205 (1992).

    Article  Google Scholar 

  8. Hough, R., Pratt, G. & Rechsteiner, M. J. biol. Chem. 261, 2400–2408 (1986).

    CAS  PubMed  Google Scholar 

  9. Waxman, L., Fagan, J. M. & Goldberg, A. L. J. biol. Chem. 262, 2451–2457 (1987).

    CAS  Google Scholar 

  10. Seufert, W. & Jentsch, S. EMBO J. 11, 3077–3080 (1992).

    Article  CAS  Google Scholar 

  11. Seufert, W., McGrath, J. P. & Jentsch, S. EMBO J. 9, 4535–4541 (1990).

    Article  CAS  Google Scholar 

  12. Seufert, W. & Jentsch, S. EMBO J. 9, 543–550 (1990).

    Article  CAS  Google Scholar 

  13. Jentsch, S., McGrath, J. P. & Varshavsky, A. Nature 329, 131–134 (1987).

    Article  CAS  ADS  Google Scholar 

  14. Heinemeyer, W., Kleinschmidt, J. A., Saidowsky, J., Escher, C. & Wolf, D. H. EMBO J. 10, 555–562 (1991).

    Article  CAS  Google Scholar 

  15. Finley, D., özkaynak, E. & Varshavsky, A. Cell 48, 1035–1046 (1987).

    Article  CAS  Google Scholar 

  16. Hamer, D. H. A. Rev. Biochem. 55, 913–951 (1986).

    Article  CAS  Google Scholar 

  17. Grill, E., Winnacker, E.-L. & Zenk, M. H. Science 230, 674–676 (1985).

    Article  CAS  ADS  Google Scholar 

  18. Ortiz, D. F. et al. EMBO J. 11, 3491–3499 (1992).

    Article  CAS  Google Scholar 

  19. Sanchez, Y., Taulien, J., Borkovich, K. A. & Lindquist, S. EMBO J. 11, 2357–2364 (1992).

    Article  CAS  Google Scholar 

  20. Van Nocker, S. & Vierstra, R. D. Proc. natn. Acad. Sci. U.S.A. 88, 10297–10301 (1991).

    Article  CAS  ADS  Google Scholar 

  21. Phelps, A., Schobert, C. T. & Wohlrab, H. Biochemistry 30, 248–252 (1991).

    Article  CAS  Google Scholar 

  22. Broach, J. R., Strathern, J. N. & Hicks, J. B. Gene 8, 121–133 (1979).

    Article  CAS  Google Scholar 

  23. Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, New York, 1986).

    Google Scholar 

  24. Ausubel, F. M. et al. (eds) Current Protocols in Molecular Biology (Green and Wiley, New York, 1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungmann, J., Reins, HA., Schobert, C. et al. Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361, 369–371 (1993). https://doi.org/10.1038/361369a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361369a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing