Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unusual clustering of carboxyl side chains in the core of iron-free ribonucleotide reductase

Abstract

THE principal driving forces of protein folding are the burial of hydrophobic residues in the interior of proteins and the exposure of charged residues at the surface1. Charged residues are only occasionally found in the interior, where they form hydrogen bonds to oppositely charged residues or main-chain atoms2. Ribonucleotide reductase, a key enzyme in DNA synthesis, catalyses the de novo production of deoxyribonucleotide precursors. It is composed of two different dimeric proteins Rl and R2 (refs 3–5). R2 subunits contain buried iron-centres with each centre formed by two ferric ions coordinated by four carboxylates and two histidine ligands6. Iron-free R2, apoR2, is a precursor of active R2 and folds into a stable protein which is transformed into active R2 by ferrous ions and molecular oxygen. Here we show that the iron-free protein does not undergo any major structural changes compared with the iron-containing R2. The effect of this is a clustering of four carboxyl side chains in the interior of the subunit, in contrast to the normal distribution of charged residues in proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brändén, C. & Tooze, J. Introduction to Protein Structure (Garland, New York, 1991).

    Google Scholar 

  2. Baker, E. N. & Hubbard, R. E. Prog. Biophys. molec. Biol. 44, 97–179 (1984).

    Article  CAS  Google Scholar 

  3. Stubbe, J. A. A. Rev. Biochem. 58, 257–285 (1989).

    Article  CAS  Google Scholar 

  4. Eriksson, S. & Sjöberg, B.-M. in Allosteric Enzymes (ed. Hervé, G.) 189–215 (CRC, Boca Raton, Florida, 1989).

    Google Scholar 

  5. Fontecave, M., Nordlund, P., Eklund, H. and Reichard, P. Adv. Enzymol. 65, 147–183 (1992).

    CAS  PubMed  Google Scholar 

  6. Nordlund, P., Sjöberg, B.-M. & Eklund, H. Nature 276, 593–598 (1990).

    Article  ADS  Google Scholar 

  7. Nordlund, P. et al. FEBS Lett. 258, 251–254 (1989).

    Article  CAS  Google Scholar 

  8. Davies, D. A. Rev. biophys. Chem. 19, 189–215 (1989).

    Article  Google Scholar 

  9. Schneider, G., Eklund, H., Cedergren-Zeppezauer, E. & Zeppezauer, M. Proc. natn. Acad. Sci. U.S.A. 80, 5289–5293 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Rees, D. C. & Lipscomb, W. N. Proc. natn. Acad. Sci. U.S.A. 80, 7151–7154 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M. & Canters, G. W. FEBS Lett. 306, 119–124 (1992).

    Article  CAS  Google Scholar 

  12. Reeke, G. N. J., Becker, J. W. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 75, 2286–2290 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Shoham, M. et al. J. molec. Biol. 131, 137–155 (1979).

    Article  CAS  Google Scholar 

  14. Bajorath, J., Raghunathan, S. Hinricks, W. & Saenger, W. Nature 337, 481–484 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Anderson, B. F., Baker, H. M., Norris, G. E., Rumball, S. V. & Baker, E. N. Nature 344, 784–787 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Atta, M., Nordlund, P., Åberg, A., Eklund, H. & Fontecave, M. J. biol. Chem. 676, 20682–20688 (1992).

    Google Scholar 

  17. Stubbe, J. Curr. Opin. struct. biol. 1, 788–795 (1991).

    Article  CAS  Google Scholar 

  18. Frausto da Silva, J. J. R. & Williams R. J. P. The Biological Chemistry of the Elements (Clarendon, Oxford, 1991).

    Google Scholar 

  19. Stroud, R. M., McCarthy, M. P. & Shuster, M. Biochemistry 29, 11009–11023 (1990).

    Article  CAS  Google Scholar 

  20. Yang, A.-S. & Honig, B. Curr. Opin. struct. biol. 2, 40–45 (1992).

    Article  CAS  Google Scholar 

  21. Atkin, C. L., T. L., Reichard, P. & Lang, G. J. biol. Chem. 248, 7664–7472 (1973).

    Google Scholar 

  22. Blum, M., Metcalf, P., Harrison, S. C. & Wiley, D. C. J. appl. Crystallogr. 20, 235–242 (1987).

    Article  CAS  Google Scholar 

  23. Brünger, T. A., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  24. Jones, T. A. Meth. Enzym. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  25. Jones, T. A., Bergdoll, M. & Kjeldgaard, M. in Crystallographic and Modeling Methods in Molecular Design (eds Bugg, C. & Ealick, S.) 189–199 (Springer, New York, 1990).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åberg, A., Nordlund, P. & Eklund, H. Unusual clustering of carboxyl side chains in the core of iron-free ribonucleotide reductase. Nature 361, 276–278 (1993). https://doi.org/10.1038/361276a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361276a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing