Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human TNF mutants with selective activity on the p55 receptor

Abstract

THE remarkable ability of tumour necrosis factor (TNF), especially in combination with interferon, selectively to kill or inhibit malignant cell lines is so far unmatched by any other combination of cytokines1–4. But clinical trials in cancer patients have on the whole been disappointing5–7, and it has been estimated that a TNF dose would be effective only at 5–25 times the maximum tolerated dose4. High TNF concentrations give a much more pronounced antitumour activity in mice1,8–10, in which murine TNF is about 50-fold more systemically toxic than human TNF11,12. But there is little or no species specificity in cytotoxicity of murine TNF and human TNF on human as well as on murine cell lines13,14. This dual action of TNF may be explained by the existence of two types of receptor for TNF15,16: the smaller, TNF-R55, is present on most cells and particularly on those susceptible to the cytotoxic action of TNF17; the larger, TNF-R55, is also present on many cell types15,16, especially those of myeloid origin, and is strongly expressed on stimulated T and B lymphocytes18. In mice, human TNF binds only to murine TNF-R55 (ref. 15), which can then mediate cytotoxic activity on malignant cells15–17,19. As human TNF does not bind to murine TNF-R75, the latter must be responsible for the much enhanced systemic toxicity of murine TNF. Human TNF can, however, become toxic in mice when a second pathway is activated1,11,20. There is no reciprocal situation in the human system: human and murine TNF bind almost equally well to the two human TNF receptors. Here we describe human TNF mutants that still interact with the human TNF-R55 receptor but which have largely lost their ability to bind to human TNF-R75. Activation of TNF-R55 is sufficient to trigger cytotoxic activity towards transformed cells. One representative human TNF mutant retains its antitumour activity in nude mice carrying tumours derived from human cancers. Under the appropriate conditions, such human TNF mutants are expected to induce less systemic toxicity in man, while still exerting their direct antitumour effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fiers, W. FEBS Lett. 285, 199–212 (1991).

    Article  CAS  Google Scholar 

  2. Sugarman, B. J. et al. Science 230, 943–945 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Fransen, L., Van der Heyden, J., Ruysschaert, R. & Fiers, W. Eur. J. Cancer clin. Oncol. 22, 419–426 (1986).

    Article  CAS  Google Scholar 

  4. Old, L. J. in Tumor Necrosis Factor: Structure, Mechanism of Action, Role in Disease and Therapy (eds Bonavida, B. & Granger, G.) 1–30 (Karger, Basel, 1990).

    Google Scholar 

  5. Spriggs, D. R. & Yates, S. W. in Tumor Necrosis Factors: The Molecules and Their Emerging Role in Medicine (ed. Beutler, B.) 383–406 (Raven, New York, 1992).

    Google Scholar 

  6. Taguchi, T. & Sohmura, Y. Biotherapy 3, 177–186 (1991).

    Article  CAS  Google Scholar 

  7. Uenard, D., Lejeune, F., Delmotte, J.-J., Renard, N. & Ewalenko, P. J. clin. Oncol. 10, 52–60 (1992).

    Article  Google Scholar 

  8. Brouckaert, P. G. G., Leroux-Roels, G. G., Guisez, Y., Tavernier, J. & Fiers, W. Int. J. Cancer 38, 763–769 (1986).

    Article  CAS  Google Scholar 

  9. Malik, S. T. A. & Balkwill, F. R. in Tumor Necrosis Factors. Structure, Function, and Mechanism of Action (eds Aggarwal, B. B. & Vilc̆ek. J.) 239–268 (Dekker, New York, 1992).

    Google Scholar 

  10. Takahashi, N., Brouckaert, P. & Fiers, W. Cancer Res. 51, 2366–2372 (1991).

    CAS  PubMed  Google Scholar 

  11. Everaerdt, B., Brouckaert, P., Shaw, A. & Fiers, W. Biochem. biophys. Res. Commun. 163, 378–385 (1989).

    Article  CAS  Google Scholar 

  12. Brouckaert, P., Libert, C., Everaerdt, B. & Fiers, W. Lymph. Cyt. Res. 11, 193–196 (1992).

    CAS  Google Scholar 

  13. Fransen, L., Ruysschaert, M. R., Van der Heyden, J. & Fiers, W. Cell. Immun. 100, 260–267 (1986).

    Article  CAS  Google Scholar 

  14. Kramer, S. M. et al. Cancer Res. 48, 920–925 (1988).

    CAS  PubMed  Google Scholar 

  15. Tartaglia, L. A. & Goeddel, D. V. Immun. Today 13, 151–153 (1992).

    Article  CAS  Google Scholar 

  16. Loetscher, H., Steinmetz, M. & Lesslauer, W. Cancer Cells 3, 221–226 (1991).

    CAS  PubMed  Google Scholar 

  17. Brockhaus, M. et al. Proc. natn. Acad. Sci. U.S.A. 87, 3127–3131 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Gehr, G., Gentz, R., Brockhaus, M., Lötscher, H. & Lesslauer, W. J. Immun. 149, 911–917 (1992).

    CAS  PubMed  Google Scholar 

  19. Tartaglia, L. A. et al. Proc. natn. Acad. Sci. U.S.A. 88, 9292–9296 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Brouckaert, P., Everaerdt, B. & Fiers, W. Eur. J. Immun. 22, 981–986 (1992).

    Article  CAS  Google Scholar 

  21. Van Ostade, X., Tavernier, J., Prangé, T. & Fiers, W. EMBO J. 10, 827–836 (1991).

    Article  CAS  Google Scholar 

  22. Yamagishi, J. et al. Protein Engng. 3, 713–719 (1990).

    Article  CAS  Google Scholar 

  23. Plaetinck, G., Declercq, W., Tavernier, J., Nabholz, M. & Fiers, W. Eur. J. Immun. 17, 1835–1838 (1987).

    Article  CAS  Google Scholar 

  24. Vandenabeele, P. et al. Lymphokine Res. 9, 381–389 (1990).

    CAS  PubMed  Google Scholar 

  25. Heller, R. A., Song, K., Fan, N. & Chang, D. J. Cell 70, 47–56 (1992).

    Article  CAS  Google Scholar 

  26. Lesslauer, W. et al. Eur. J. Immun. 21, 2883–2886 (1991).

    Article  CAS  Google Scholar 

  27. Conzelmann, A., Corthésy, P., Cianfriglia, M., Silva, A. & Nabholz, M. Nature 298, 170–172 (1982).

    Article  ADS  CAS  Google Scholar 

  28. de la Luna, S., Soria, I., Pulido, D., Ortin J. & Jiménez, A. Gene 62, 121–126 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostade, X., Vandenabeele, P., Everaerdt, B. et al. Human TNF mutants with selective activity on the p55 receptor. Nature 361, 266–269 (1993). https://doi.org/10.1038/361266a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361266a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing