Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemomechanical cycle of kinesin differs from that of myosin

Abstract

MOTOR proteins move unidirectionally along cytoskeletal polymers by coupling translocation to cycles of ATP hydrolysis. The energy from ATP is required both to generate force and to dissociate the motor–filament complex in order to begin a new Chemomechanical cycle1,2. For myosin, force production is associated with phosphate release following ATP hydrolysis, whereas dissociation of actomyosin is tightly coupled to the binding of ATP3. Dynein, a microtubule motor, uses a similar cycle4, suggesting that all cytoskeletal motors might operate by a common mechanism. Here we investigate kinesin's Chemomechanical cycle by assaying microtubule movement by single kinesin molecules when intermediate states in the hydrolysis cycle are prolonged with ATP analogues or inhibitors. In contrast to myosin and dynein, kinesin with bound ADP dissociates from microtubules during translocation, whereas kinesin with unhydrolysed nucleotide remains tightly associated with the polymer. These findings imply that kinesin converts ATP energy into mechanical work by a pathway distinct from that of myosin or dynein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eisenberg, E. & Hill, T. L. Science 227, 999–1006 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Jencks, W. P. in The Roots of Modern Biochemistry 571–580 (Walter de Gruyer, Berlin, 1988).

    Google Scholar 

  3. Cooke, R. CRC crit. Rev. Biochem. 21, 53–118 (1986).

    Article  CAS  Google Scholar 

  4. Johnson, K. A. A. Rev. Biophys. biophys. Chem. 14, 161–188 (1985).

    Article  CAS  Google Scholar 

  5. Howard, J., Hudspeth, A. J. & Vale, R. D. Nature 342, 154–158 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Block, S. M., Goldtein, L. S. & Schnapp, B. J. Nature 348, 348–352 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Hackney, D. D. Proc. natn. Acad. Sci. U.S.A. 85, 6314–6318 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Pate, E. & Cooke, R. J. Musc. Res. Cell Motil. 12, 376–393 (1991).

    Article  CAS  Google Scholar 

  9. Kuznetsov, S. A. & Gelfand, V. I. Proc. natn. Acad. Sci. U.S.A. 83, 8350–8354 (1986).

    Article  Google Scholar 

  10. Goody, R. S. & Mannherz, H. G. in Protein-Ligand Interactions (eds Sund, H. & Blauer, G.) (Walter de Hruyer, Berlin, 1975).

    Google Scholar 

  11. Shimizu, T., Katsura, T., Domanico, P. L., Marchese-Ragona, S. P. & Johnson, K. A. Biochemistry 28, 7022–7027 (1989).

    Article  CAS  Google Scholar 

  12. Cohn, S. A., Ingold, A. L. & Scholey, J. M. J. biol. Chem. 264, 4290–4297 (1989).

    CAS  Google Scholar 

  13. Lymm, R. W. & Taylor, E. W. Biochemistry 10, 4617–4624 (1971).

    Article  Google Scholar 

  14. Porter, M. E. & Johnson, K. A. J. biol. Chem. 258, 6582–6587 (1983).

    CAS  PubMed  Google Scholar 

  15. Omoto, C. K. & Johnson, K. A. Biochemistry 25, 419–427 (1986).

    Article  CAS  Google Scholar 

  16. Sadhu, A. & Taylor, E. W. J. biol. Chem. 267, 11352–11359 (1992).

    CAS  PubMed  Google Scholar 

  17. Taylor, E. W. in Heart and Cardiovascular System (eds Fozzard, H. A.) 1281–1293 (Raven, New York, 1992).

    Google Scholar 

  18. Holzbaur, E. L. F. & Johnson, J. A. Biochemistry 25, 428–434 (1986).

    Article  CAS  Google Scholar 

  19. Mathies, R. A., Lin, S. W., Ames, J. B. & Pollard, W. T. A. Rev. Biophys. Chem. 20, 491–518 (1991).

    Article  CAS  Google Scholar 

  20. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romberg, L., Vale, R. Chemomechanical cycle of kinesin differs from that of myosin. Nature 361, 168–170 (1993). https://doi.org/10.1038/361168a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361168a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing