Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray structure of a decameric cyclophilin-cyclosporin crystal complex

Abstract

HUMAN cyclophilin A (CypA), a ubiquitous intracellular protein of 165 amino acids, is the major receptor for the cyclic undecapeptide immunosuppressant drug cyclosporin A (CsA)1,2, which prevents allograft rejection after transplant surgery3,4 and is efficacious in the field of autoimmune diseases5. CsA prevents T-cell proliferation by blocking the calcium-activated pathway leading to interleukin-2 transcription. Besides their ability to bind CsA, the cyclophilin isoforms6–8 also have peptidyl–prolyl isomerase activity9–11 and enhance the rate of protein folding12,13. The macrolide FK506 acts similarly to CsA and its cognate receptor FKBP also has peptidyl–prolyl isomerase activity14. Inhibition of this enzymatic activity alone is not sufficient to achieve immunosuppression15,16. A direct molecular interaction between the drug–immunophilin complex (CsA–CypA, or FK506–FKBP) and the phosphatase calcineurin, is responsible for modulating the T-cell receptor signal transduction pathway17,18. Here we describe the crystal structure of a decameric CypA–CsA complex. The crystallographic asymmetric unit is composed of a pentamer of 1:1 cyclophilin–cyclosporin complexes of rather exact non-crystallographic fivefold symmetry. The 2.8 Å electron density map is of high quality. The five independent cyclosporin molecules are clearly identifiable, providing an unambiguous picture of the detailed interactions between a peptide drug and its receptor. It broadly confirms the results of previous NMR, X-ray and modelling studies, but provides further important structural details which will be of use in the design of drugs that are analogues of CsA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harding, M. W., Handschumacher, R. E. & Speicher, D. W. J. biol. Chem. 261, 8547–8552 (1985).

    Google Scholar 

  2. Handschumacher, R. E., Harding, M. W., Rice, J., Drugge, R. J. & Speicher, D. W. Science 226, 544–547 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Calne, R. Y. et al. Lancet 2, 1323–1326 (1978).

    Article  CAS  Google Scholar 

  4. Borel, J. F. Pharmac. Rev. 41, 259–371 (1989).

    CAS  Google Scholar 

  5. Feutren, G. Transplant. Proc. 24 (suppl. 2), 55–60 (1992).

    CAS  PubMed  Google Scholar 

  6. Swanson, S. K.-H. et al. Proc. natn. Acad. Sci. U.S.A. 89, 3741–3745 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Price, E. R. et al. Proc. natn. Acad. Sci. U.S.A. 88, 1903–1907 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Friedman, J. & Weissman, I. Cell 66, 799–806 (1991).

    Article  CAS  Google Scholar 

  9. Harrison, R. K. & Stein, R. L. J. Am. chem. Soc. 114, 3464–3471 (1992).

    Article  CAS  Google Scholar 

  10. Kofron, J. L. Kuzmic, P., Kishore, V., Colon-Bonilla, E. & Rich, D. H. Biochemistry 30, 6127–6134 (1991).

    Article  CAS  Google Scholar 

  11. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. & Schmid, F. X. Nature 337, 476–478 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Schoenbrunner, E. R. et al. J. biol. Chem. 266, 3630–3635 (1991).

    CAS  Google Scholar 

  13. Fransson, C. et al. FEBS Lett. 296, 90–94 (1992).

    Article  CAS  Google Scholar 

  14. Rosen, M. K. & Schreiber, S. L. Angew. Chem. 104, 413–430 (1992).

    Article  CAS  Google Scholar 

  15. Schreiber, S. L. Science 251, 283–287 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Sigal, N. H. & Al., E. J. exp. Med. 173, 619–628 (1991).

    Article  CAS  Google Scholar 

  17. O'Keefe, S. J., Tamura, J., Kincaid, R. L., Tocci, M. J. & O'Neill, E. A. Nature 357, 692–694 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Clipstone, N. A. & Crabtree, G. R. Nature 357, 695–697 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Kallen, J. et al. Nature 353, 276–279 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Kallen, J. & Walkinshaw, M. D. FEBS Lett. 300, 286–290 (1992).

    Article  CAS  Google Scholar 

  21. Ke, H., Zydowsky, L. D., Liu, J. & Walsh, C. T. Proc. natn. Acad. Sci. U.S.A. 88, 9483–9487 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Weber, C. et al. Biochemistry 30, 6563–6574 (1991).

    Article  CAS  Google Scholar 

  23. Fesik, S. W. et al. Biochemistry 30, 6574–6583 (1991).

    Article  CAS  Google Scholar 

  24. Spitzfaden, C. et al. FEBS Lett. 300, 291–300 (1992).

    Article  CAS  Google Scholar 

  25. Fesik, S. W., Neri, P., Meadows, R., Olejniczak, E. T. & Gemmecker, G. J. Am. chem. Soc. 114, 3165–3166 (1992).

    Article  CAS  Google Scholar 

  26. Gallion, S. & Ringe, D. Protein. Engng 5, 391–397 (1992).

    Article  CAS  Google Scholar 

  27. Zurini, M. et al. FEBS Lett. 276, 63–66 (1990).

    Article  CAS  Google Scholar 

  28. Tai, P. K., Albers, M. W., Chang, H., Faber, L. E. & Schreiber, S. L. Science 256, 1315–1318 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Langer, T. et al. Nature 356, 683–689 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Myles, D. A. A. et al. J. molec. Biol. 216, 491–496 (1990).

    Article  CAS  Google Scholar 

  31. Wood, S. P. et al. J. molec. Biol. 202, 169–173 (1988).

    Article  CAS  Google Scholar 

  32. Lindqvist, Y. J. Molec. Biol. 209, 151–166 (1989).

    Article  CAS  Google Scholar 

  33. Brunger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pflügl, G., Kallen, J., Schirmer, T. et al. X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature 361, 91–94 (1993). https://doi.org/10.1038/361091a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361091a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing