Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Patterns of fine root mortality in two sugar maple forests

Abstract

MUCH of the carbon assimilated by plants is allocated to fine root production1–5, and the amount of carbon and nutrients subsequently returned to the soil from fine root turnover equals or surpasses that returned through leaf litter in many forests6–9. Unfortunately, limitations in traditional methods of studying roots have prevented us from thoroughly understanding the dynamic nature of fine root mortality in most forests, and better measurements of fine root longevity are needed to quantify and model more accurately ecosystem carbon and nutrient budgets8–11. We used minirhizotrons12,13 to follow the mortality of contemporaneous fine root cohorts in two sugar maple (Acer saccharum Marsh.) forests located 80 km apart (north–south) during 1989 and 1990. We report here that roots in the northern forest consistently lived the longest, principally owing to greater rates of mortality early in the life of roots at the southern site. Differences in site factors suggest that warmer soil temperatures seem to be associated with the more rapid death of roots at the southern site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gower, S. T., Vogt, K. A. & Grier, C. C. Ecol. Monogr. 62, 43–65 (1992).

    Article  Google Scholar 

  2. Grier, C. C., Vogt, K. A., Keyes, M. R. & Edmonds, R. L. Can. J. For. Res. 11, 155–167 (1981).

    Article  Google Scholar 

  3. Keyes, M. R. & Grier, C. C. Can. J. For. Res. 11, 599–605 (1981).

    Article  Google Scholar 

  4. Harris, W. F., Kinerson, R. S. & Edwards, N. T. Pedobiologia 17, 369–381 (1977).

    Google Scholar 

  5. Fogel, R. in Ecological Interactions in Soil (eds. Fitter, A. H., Atkinson, D., Read, D. J. & Usher, M. B.) 23–36 (Blackwell Scientific, Oxford, 1985).

    Google Scholar 

  6. Cox, T. L., Harris, W. F., Ausmus, B. S. & Edwards, N. T. Pedobiologia 18, 264–271 (1978).

    CAS  Google Scholar 

  7. Joslin, J. D. & Henderson, G. S. For. Sci. 33, 330–346 (1987).

    Google Scholar 

  8. Raich, J. W. & Nadelhoffer, K. J. Ecology 70, 1346–1354 (1989).

    Article  Google Scholar 

  9. Ewel, K. C. & Gholz, H. L. For. Sci. 37, 397–438 (1991).

    Google Scholar 

  10. Landsberg, J. J., Kaufmann, M. R., Binkley, D., Isebrands, J. & Jarvis, P. G. Tree Physiol. 9, 1–15 (1991).

    Article  Google Scholar 

  11. Hendrick, R. L. & Pregitzer, K. S. Ecology 73, 1094–1104 (1992).

    Article  Google Scholar 

  12. Upchurch, D. R. & Ritchie, J. T. Agron, J. 75, 1009–1015 (1983).

    Article  Google Scholar 

  13. Hendrick, R. L. & K. S. Pregitzer, Pl. Soil 143, 283–288 (1992).

    Article  Google Scholar 

  14. Atkinson, D. Trends Ecol. Evol. 7, 173–174 (1992).

    Article  CAS  Google Scholar 

  15. MacDonald, N. W., Burton, A. J., Jurgensen, M. F., McLaughlin, J. W. & Morz, G. D. Soil Sci. Soc. Am. J. 55, 1709–1715 (1991).

    Article  ADS  Google Scholar 

  16. Burton, A. J., Pregitzer, K. S. & Reed, D. D. For. Sci. 37, 1041–1059 (1991).

    Google Scholar 

  17. Pregitzer, K. S. & Burton, A. J. Can. J. For. Res. 21, 1148–1153 (1991).

    Article  Google Scholar 

  18. Pyke, D. A. & Thompson, J. N. Ecology 67, 240–245 (1986).

    Article  Google Scholar 

  19. Fogel, R. Pl. Soil 71, 75–85 (1983).

    Article  Google Scholar 

  20. McClaugherty, C. A., Aber, J. A. & Melillo, J. M. Ecology 63, 1481–1490 (1982).

    Article  Google Scholar 

  21. Persson, H. Vegetatio 41, 101–109 (1979).

    Article  Google Scholar 

  22. Amthor, J. S. Pl. Cell Environ. 7, 561–569 (1984).

    Google Scholar 

  23. Lawrence, W. T. & Oechel, W. C. Can. J. For. Res. 13, 840–849 (1983).

    Article  CAS  Google Scholar 

  24. Marshall, J. P. & Waring, R. H. Can. J. For. Res. 15, 791–800 (1985).

    Article  Google Scholar 

  25. Atkinson, D. in Ecological Interactions in Soil (eds Fitter, A. H., Atkinson, D., Read. D. J. & Usher M. B.) 43–65 (Blackwell Scientific, Oxford, 1985).

    Google Scholar 

  26. Head, G. C. in Shedding of Roots (ed. T. T. Kozlowski) 237–293 (Academic, New York, 1973).

    Google Scholar 

  27. Aber, J. D., Melillo, J, M., Nadelhoffer, K. J., Pastor, J. & Boone, R. D. Ecol. Appl. 1, 303–315 (1991).

    Article  Google Scholar 

  28. Running, S. W. & Gower, S. T. Tree Physiol. 9, 147–160 (1991).

    Article  CAS  Google Scholar 

  29. Bonan, G. B. J. geophys. Res. 96, 7301–7312 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendrick, R., Pregitzer, K. Patterns of fine root mortality in two sugar maple forests. Nature 361, 59–61 (1993). https://doi.org/10.1038/361059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361059a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing