Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Palaeomagnetic evidence for large-magnitude, low-angle normal faulting in a metamorphic core complex

Abstract

CONTROVERSY exists over whether large-magnitude extensional deformation can occur along low-angle, master detachment (normal) faults1–16. Large amounts of Cenozoic extension occurred in the Basin and Range province of the western United States, and master detachment faults related to this extension are currently exposed as subhorizontal structures along crustal arches known as metamorphic core complexes (MCCs)10,11,17. One set of models suggests that MCCs represent crustal-scale blocks bounded by originally high-angle normal faults which have tilted to sub-horizontal attitudes1–6. More dynamic models propose isostatically induced flexural tilting of an initial subhorizontal fault, to an active high-angle fault, to final abandonment as a subhorizontal structure7–9; these models require MCC detachment faults and their footwalls to have been tilted by 30–60°. Alternatively, MCC detachment faults may have originated as subhorizontal or low-angle structures10–16. Here we test these models with palaeomag-netic data from undeformed portions of the South Mountains, a typical Cenozoic MCC in the southern Basin and Range province18–24. Comparison with time-averaged expected directions of the geomagnetic field25–27 yields no evidence for tilting of the footwall. We conclude that the South Mountains master detachment fault was active as a low-angle extensional structure, with a dip of 10°.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, E. L., Gans, P. B. & Garling, J. Tectonics 2, 239–263 (1983).

    Article  ADS  Google Scholar 

  2. Davis, G. H. Geology 11, 342–347 (1983).

    Article  ADS  Google Scholar 

  3. Jackson, J. A. Continental Extensional Tectonics, Geol. Soc. spec. Publs 28, 3–17 (1987).

    Article  Google Scholar 

  4. Jackson, J. A. & White, N. J. J. struct. Geol. 11, 15–36 (1989).

    Article  ADS  Google Scholar 

  5. King, G. & Ellis, M. Nature 348, 689–693 (1990).

    Article  ADS  Google Scholar 

  6. Miller, M. G. Geology 19, 372–375 (1991).

    Article  ADS  Google Scholar 

  7. Wernicke, B. & Axen, G. J. Geology 16, 848–851 (1988).

    Article  ADS  Google Scholar 

  8. Hamilton, W. B. U.S. Geol. Surv. Bull. 1790, 51–85 (1988).

    Google Scholar 

  9. Buck, W. R. Tectonics 7, 959–973 (1988).

    Article  ADS  Google Scholar 

  10. Davis, G. A. & Lister, G. S. Geol. Soc. Am. spec. Pap. 218, 133–159 (1988).

    Google Scholar 

  11. Lister, G. S. & Davis, G. A. J. struct. Geol. 11, 65–94 (1989).

    Article  ADS  Google Scholar 

  12. Yin, A. Tectonics 8, 469–482 (1989).

    Article  ADS  Google Scholar 

  13. Reynolds, S. J. & Lister, G. S. Geology 18, 216–219 (1990).

    Article  ADS  Google Scholar 

  14. Melosh, H. J. Nature 343, 331–335 (1990).

    Article  ADS  Google Scholar 

  15. Forsyth, D. W. Geology 20, 27–30 (1992).

    Article  ADS  Google Scholar 

  16. Wernicke, B. The Cordilleran Orogen; Coterminous United States, The Geology of North America G3, 553–572 (Geological Society of America, Boulder, Colorado, 1992).

    Google Scholar 

  17. Spencer, J. E. Geology 12, 95–98 (1984).

    Article  ADS  Google Scholar 

  18. Reynolds, S. J. & Rehrig, W. A. Geol. Soc. Am. Mem. 153, 159–175 (1980).

    Google Scholar 

  19. Reynolds, S. J. Arizona Bur. Geol. Min. Tech. Geol. Sur. Branch Bull. 195 (1985).

  20. Reynolds, S. J. Shafiqullah, M., Damon, P. E. & DeWitt, E. Geology 14, 283–286 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Davis, G. A., Lister, G. S. & Reynolds, S. J. Geology 14, 7–10 (1986).

    Article  ADS  Google Scholar 

  22. Reynolds, S. J., Richard, S. M., Haxel, G. B., Tosdal, R. M. & Laubach, S. E. Metamorphism and Crustat Evolution, Western Conterminous United States, Rubey 7, 466–501 (Prentice-Hall, Englewood Cliffs, 1988).

    Google Scholar 

  23. Smith, B. M., Reynolds, S. J., Day, H. W. & Bodnar, R. J. Geol. Soc. Am. Bull. 103, 559–569 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Fitzgerald, P. G., Reynolds, S. J., Stump, E., Foster, D. A. & Gleadow, A. J. W. Tectonics (submitted).

  25. Diehl, J. F., McClannahan, K. M. & Bornhorst, T. J. J. geophys. Res. 93, 4869–4879 (1988).

    Article  ADS  Google Scholar 

  26. Irving, E. & Irving, G. A. Geophys. Surv. 5, 141–188 (1982).

    Article  ADS  Google Scholar 

  27. Mankinen, E. A., Larson, E. E., Gromme, C. S., Prevot, M. & Coe, R. S. J. geophys. Res. 92, 8057–8076 (1987).

    Article  ADS  Google Scholar 

  28. Hagstrum, J. T. & Gans, P. B. J. geophys. Res. 94, 1827–1847 (1989).

    Article  ADS  Google Scholar 

  29. Hudson, M. R. & Geissman, J. W. J. geophys. Res. 96, 3979–4006 (1991).

    Article  ADS  Google Scholar 

  30. Janecke, S. U., Geissman, J. W. & Bruhn, R. L. Tectonics 10, 403–432 (1991).

    Article  ADS  Google Scholar 

  31. Faulds, J. E., Geissman, J. W. & Shafiqullah, M. Tectonics 11, 204–227 (1992).

    Article  ADS  Google Scholar 

  32. Doughty, T. P. & Sheriff, S. D. Tectonics 11, 663–671 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livaccari, R., Geissman, J. & Reynolds, S. Palaeomagnetic evidence for large-magnitude, low-angle normal faulting in a metamorphic core complex. Nature 361, 56–59 (1993). https://doi.org/10.1038/361056a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361056a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing