Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The spatial arrangement of cones in the primate fovea

Abstract

THE retinae of Old World primates contain three classes of light-sensitive cone, which exhibit peak absorption in different spectral regions1–4. But how are the different types of cone arranged in the hexagonal mosaic of the fovea? This question has often been answered with artists' impressions5–7, but never with direct measurements. Staining for antibodies specific to the short-wave photopigment has revealed a sparse, semiregular array of cones8; but nothing is known about the arrangement of the more numerous long- and middle-wave cones. Are they randomly distributed, with chance aggregations of one type, as Hartridge postulated in these columns nearly 50 years ago9,10? Or do they exhibit a regular alternation, recalling the systematic mosaics seen in some non-mammalian species6,11? Or, conversely, is there positive clumping of particular cone types, as might be expected if local patches of cones were descended from a single precursor cell? We have made direct microspectrophotometric measurements of patches of foveal retina from Old World monkeys, and report here that the distribu tion of long- and middle-wave cones is locally random. These two cone types are present in almost equal numbers, and not in the ratio of 2:1 that has been postulated for the human fovea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bowmaker, J. K., Dartnall, H. J. A. & Mollon, J. D. J. Physiol. 298, 131–143 (1980).

    Article  CAS  Google Scholar 

  2. Baylor, D. A., Nunn, B. J. & Schnapf, J. L. J. Physiol. 390, 145–160 (1987).

    Article  CAS  Google Scholar 

  3. Hárosi, F. I. J. gen. Physiol. 89, 717–743 (1987).

    Article  Google Scholar 

  4. Bowmaker, J. K. et al. J. exp. Biol. 156, 1–19 (1991).

    CAS  PubMed  Google Scholar 

  5. Walraven, P. L. Vision Res. 14, 1339–1343 (1974).

    Article  CAS  Google Scholar 

  6. Lythgoe, J. N. The Ecology of Vision (Oxford Univ. Press, Oxford. 1979).

    Google Scholar 

  7. Williams, D. R. et al. in From Pigments to Perception (eds Valberg, A. & Lee, B. B.) (Plenum, New York, 1991).

    Google Scholar 

  8. Curcio, A. C. et al. J. comp. Neurol. 312, 610–624 (1991).

    Article  CAS  Google Scholar 

  9. Hartridge, H. Nature 153, 45–46 (1944).

    Article  ADS  Google Scholar 

  10. Hartridge, H. Nature 157, 482 (1946).

    Article  ADS  CAS  Google Scholar 

  11. Bowmaker, J. K. & Kunz, Y. W. Vision Res. 27, 2101–2108 (1987).

    Article  CAS  Google Scholar 

  12. Liebman, P. A. & Entine, G. J. opt. Soc. Am. 54, 1451–1459 (1964).

    Article  ADS  CAS  Google Scholar 

  13. Knowles, A. & Dartnall, H. J. A. The Photobiology of Vision (Academic, London, 1977).

    Google Scholar 

  14. Mollon, J. D., Bowmaker, J. K. & Jacobs, G. H. Proc. R. Soc. B 222, 373–399 (1984).

    ADS  CAS  Google Scholar 

  15. Dobelle, W. H., Marks, W. B. & MacNichol, E. F. Jr Science 168, 1508–1510 (1969).

    Article  ADS  Google Scholar 

  16. Hartridge, H. Phil. Trans. R. Soc. 232, 519–671 (1947).

    Article  Google Scholar 

  17. Reid, R. C., Shapley, R. M. Nature 356, 716–718 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Lennie, P. & Haake, P. W., in Computational Models of Visual Processing (eds Landy, M. S. & Movshon, J. A.) 71–82 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  19. Marc, R. E. & Sperling, H. G. Science 196, 454–456 (1977).

    Article  ADS  CAS  Google Scholar 

  20. de Monasterio, F. M., Schein, S. J. & McCrane, E. P. Science 213, 1278–1281 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Anhelt, P. K., Kolb, H. & Pflug, R. J. comp. Neurol. 255, 18–34 (1987).

    Article  Google Scholar 

  22. Cicerone, C. M. & Nerger, J. L. Vision Res. 29, 115–128 (1989).

    Article  CAS  Google Scholar 

  23. Pokorny, J., Smith, V. C. & Wesner, M. F. in From Pigments to Perception (eds Valberg, A. & Lee, B. B.) (Plenum, New York, 1991).

    Google Scholar 

  24. Mollon, J. D. J. exp. Biol 146, 21–38 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollon, J., Bowmaker, J. The spatial arrangement of cones in the primate fovea. Nature 360, 677–679 (1992). https://doi.org/10.1038/360677a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360677a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing