Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A whole genome approach to in vivo DNA-protein interactions in E. coli

Abstract

THE increasingly rapid pace at which genomic DNA sequences are being determined has created a need for more efficient techniques to determine which parts of these sequences are bound in vivo by the proteins controlling processes such as gene expression, DNA replication and chromosomal mechanics. Here we describe a whole-genome approach to identify and characterize such DNA sequences. The method uses endogenous or artificially introduced methylases to methylate all genomic targets except those protected in vivo by protein or non-protein factors interfering with methylase action. These protected targets remain unmethylated in purified genomic DNA and are identified using methylation-sensitive restriction endonucleases. When the method was applied to the Escherichia coli genome, 0.1% of the endogenous adenine methyltransferase (Dam methylase) targets were found to be unmethylated. Five foreign methylases were examined by transfection. Database-matched DNA sequences flanking the in vivo -protected Dam sites all fell in the non-coding regions of seven E. coli operons (mtl, cdd, flh, gut, car, psp and fep). In the first four operons these DNA sequences closely matched the consensus sequence that binds to the cyclic AMP-receptor protein. The in vivo protection at the Dam site upstream of the car operon was correlated with a downregulation of car expression, as expected of a feedback represser-binding model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Razin, A. et al. Nucleic Acids Res. 8, 1783–1792 (1980).

    Article  CAS  Google Scholar 

  2. Geier, G. & Modrich, P. J. biol. Chem. 254, 1408–1413 (1979).

    CAS  PubMed  Google Scholar 

  3. Blyn, L. B., Braaten, B. A. & Low, D. A. EMBO J. 9, 4045–4054 (1990).

    Article  CAS  Google Scholar 

  4. Ringquist, S. & Smith, C. L. Proc. natn. Acad. Sci. U.S.A. 89, 4539–4543 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Braaten, B. A. et al. Proc. natn. Acad. Sci. U.S.A. 89, 4250–4254 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Campbell, J. L. & Kleckner, N. Gene 74, 189–190 (1988).

    Article  CAS  Google Scholar 

  7. Jaworski, A. et al. Science 238, 773–777 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Yang, C. C. & Nash, H. Cell 57, 869–880 (1989).

    Article  CAS  Google Scholar 

  9. Schultz, S. C., Shields, G. C. & Steitz, T. A. Science 253, 1001–1007 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Wilson, G. G. Gene 74, 281–289 (1988).

    Article  CAS  Google Scholar 

  11. Valentin-Hansen, P. et al. Molec. Microbiol. 3, 1385–1390 (1989).

    Article  CAS  Google Scholar 

  12. Bird, A. P. & Southern, E. M. J. molec. Biol. 118, 27–47 (1978).

    Article  CAS  Google Scholar 

  13. Yamada, M. & Saier, M. J. biol. Chem. 262, 5455–5462 (1987).

    CAS  PubMed  Google Scholar 

  14. Lengeler, J. & Steinberger, H. Molec. gen. Genet. 164, 163–170 (1978).

    Article  CAS  Google Scholar 

  15. Sabounn, D. & Beckwith, J. J. Bact. 122, 338–340 (1975).

    Google Scholar 

  16. Piette, J. et al. Proc. natn. Acad. Sci. U.S.A. 81, 4134–4138 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Lyons, S. M. & Schendel, P. F. J. Bact. 159, 421–423 (1984).

    CAS  PubMed  Google Scholar 

  18. Campbell, J. L. & Kleckner, N. Cell 62, 967–979 (1990).

    Article  CAS  Google Scholar 

  19. Ephrussi, A., Church, G. M., Tonegawa, S. & Gilbert, W. Science 227, 134–140 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Becker, M. M. & Wang, J. C. Nature 309, 682–687 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Cartwright, I. & Kelly, S. E. Bio Techniques 11, 188–203 (1991).

    CAS  Google Scholar 

  22. Saluz, H. P., Wiebauer, K. & Wallace, A. Trends Genet. 7, 207–211 (1991).

    CAS  PubMed  Google Scholar 

  23. Singh, J. & Klar, A. J. S. Genes Dev. 6, 186–196 (1992).

    Article  CAS  Google Scholar 

  24. Feher, Z., Schlagman, S. L. Miner, Z. & Hattman, S. Curr. Genet. 16, 461–464 (1989).

    Article  CAS  Google Scholar 

  25. Kwoh, T. J. et al. Nucleic Acids Res. 16, 11489–11505 (1988).

    Article  CAS  Google Scholar 

  26. Vovis, G. F. & Lacks, S. J. J. molec. Biol 115, 525–538 (1977).

    Article  CAS  Google Scholar 

  27. Gribskov, M., Luthy, R., & Eisenberg, D. Meth. Enzym. 183, 146–159 (1990).

    Article  CAS  Google Scholar 

  28. Stormo, G. D. & Hartzell, G. W. Proc. natn. Acad. Sci. U.S.A. 86, 1183–1187 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Jiang, W. et al. Molec. Microbiol. 4, 2003–2006 (1990).

    Article  CAS  Google Scholar 

  30. Davis, T., Yamada, M., Elgort, M. & Saier, M. H. Molec. Microbiol. 2, 405–412 (1988).

    Article  CAS  Google Scholar 

  31. Silverman, M. & Simon, M. J. Bact. 120, 1196–1203 (1974).

    CAS  PubMed  Google Scholar 

  32. Bartlett, B. H., Frantz, B. B. & Matsumura, P. J. Bact. 170, 1575–1581 (1988).

    Article  CAS  Google Scholar 

  33. Brissette, J. L., Weiner, L., Ripmaster, T. L. & Model, P. Genbank 69.0 (1991).

  34. Shea, C. M. & Mclntosh, M. A. Genbank 69.0 (1991).

  35. E'oright, R. in Molecular Structure and Biological Activity (eds Griffen, J. & Duax, W.) (Elsevier Scientific, New York, 1982).

    Google Scholar 

  36. Gunasekera, A., Ebright, Y. W. & Ebright, R. H. Nucleic Acids Res. 18, 6853–6856 (1990).

    Article  CAS  Google Scholar 

  37. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

  38. Church, G. M. & Kieffer-Higgins, S. Science 240, 185–188 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Church, G. A whole genome approach to in vivo DNA-protein interactions in E. coli. Nature 360, 606–610 (1992). https://doi.org/10.1038/360606a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360606a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing