Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Excitation of true polar wander by subduction

Abstract

TRUE polar wander—the global motion of the mantle relative to the Earth's rotation axis—is known from the analysis of palaeomagnetic data, hotspot tracks and plate motions to have occurred at velocities of up to 0.5° Myr−1 since the Late Cretaceous period1–4. We address here the longstanding question of how fast episodes of true polar wander (TPW) can be excited5, by analysing the impact of the distribution and activity of subduction zones on polar motion. Using nonlinear Liouville equations, which allow us to treat large excursions of the polar axis, we show that unrealistically fast TPW is excited by subduction episodes unless the lower mantle has a viscosity at least 10 times that of the upper mantle. This need for a viscosity increase with depth in the mantle reinforces the conclusions of previous studies on post-glacial rebound and geoid anomalies, theoretical creep laws and some preliminary results on TPW induced by density anomalies embedded in the mantle6–10. The lower viscosity in the upper mantle means that upper-mantle density anomalies are most effective in exciting TPW. Changes in the pattern of subduction through time may be responsible for both episodes of fast TPW and times of quiescence in polar motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gordon, R. G. & Livermore, R. A. Geophys. J. R. astr. Soc. 91, 1049–1057 (1987).

    Article  ADS  Google Scholar 

  2. Sager, W. W. & Bleil, U. Nature 326, 488–490 (1987).

    Article  ADS  Google Scholar 

  3. Courtillot, V. & Besse, J. Science 237, 1140–1147 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Hargraves, R. B. & Duncan, R. A. Nature 245, 361–363 (1973).

    Article  ADS  Google Scholar 

  5. Gold, T. Nature 175, 526–529 (1955).

    Article  ADS  Google Scholar 

  6. Nakada, M. & Lambeck, K. Geophys. J. int. 96, 497–517 (1989).

    Article  ADS  Google Scholar 

  7. Spada, G., Yuen, D. A., Sabadini, R. & Boschi, E. Nature 351, 53–55 (1991).

    Article  ADS  Google Scholar 

  8. Ricard, Y., Vigny, C. & Froidevaux, C. J. geophys. Res. 94, 13739–13754 (1989).

    Article  ADS  Google Scholar 

  9. Ranalli, G. in Glacial Isostasy, Sea-level and Mantle Rheology (eds Sabadini, R., Lambeck, K. & Boschi, E.) 343–378 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  10. Ricard, Y., Sabadini, R. & Spada, G. J. geophys. Res. 97, 14223–14236 (1992).

    Article  ADS  Google Scholar 

  11. Goldreich, P. & Toomre, A. J. geophys. Res. 74, 2555–2567 (1969).

    Article  ADS  Google Scholar 

  12. Morgan, W. J. in The Sea, Vol. 7 (ed. Emiliani, C.) 443–487 (Wiley, New York, 1981).

    Google Scholar 

  13. Sabadini, R. & Yuen, D. A. Nature 339, 373–375 (1989).

    Article  ADS  Google Scholar 

  14. Richards, M. A. & Hager, B. H. J. geophys. Res. 89, 5987–6002 (1984).

    Article  ADS  Google Scholar 

  15. Ricard, Y., Fleitout, L. & Froidevaux, C. Ann. Geophys. 2, 267–286 (1984).

    ADS  Google Scholar 

  16. Sabadini, R. & Peltier, W. R. Geophys. J. R. astr. Soc. 66, 553–578 (1981).

    Article  ADS  Google Scholar 

  17. Takeuchi, H., Saito, M. & Kobayashi, N. J. geophys. Res. 67, 1141–1154 (1962).

    Article  ADS  Google Scholar 

  18. Spada, G., Yuen, D. A., Sabadini, R., Morin, P. J. & Gasperini, P. Math. J. 1, 65–69 (1990).

    Google Scholar 

  19. Yuen, D. A., Sabadini, R. & Boschi, E. J. geophys. Res., 87, 10745–10762 (1982).

    Article  ADS  Google Scholar 

  20. Spada, G., Sabadini, R., Yuen, D. A. & Ricard, Y. Geophys. J. int. 109, 683–700 (1992).

    Article  ADS  Google Scholar 

  21. Turcotte, D. L. & Shubert, G. Geodynamics (Wiley, New York, 1982).

    Google Scholar 

  22. Rochester, M. G. & Smylie, D. E. J. geophys. Res. 79, 4948–4951 (1974).

    Article  ADS  Google Scholar 

  23. Gordon, R. G. & Jurdy, D. M. J. geophys. Res. 91, 12389–12406 (1986).

    Article  ADS  Google Scholar 

  24. Kominz, M. A. in Interregional Unconformities and Hydrocarbon Accumulation (ed. Schlee, J. S.) Am. Assoc. Petr. Geol. Mem. 36, 109–127 (Tulsa, 1984).

    Google Scholar 

  25. Rona, P. A. & Richardson, E. S. Earth planet. Sci. Lett. 40, 1–11 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spada, G., Ricard, Y. & Sabadini, R. Excitation of true polar wander by subduction. Nature 360, 452–454 (1992). https://doi.org/10.1038/360452a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360452a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing