Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Actin cables and epidermal movement in embryonic wound healing


SKIN wounds in embryos heal rapidly and perfectly. Even though the epidermis appears to be stretched taut over the surface of a structure such as a growing limb bud, its response to wounding is to close over the lesion, rather than to gape more widely. In adult wounds, the epidermis seems to migrate by means of lamellipodia, crawling over the exposed connective tissue1–5. But in embryonic wounds we do not see lamellipodia. The epidermis at the edge of the wound looks smooth, as though under a circumferential tension. Here we show that a cable of filamentous actin appears to run continuously around most of the wound margin. It is confined to the single row of basal cells at the free edge of the epidermis. We suggest that the actin cable acts as a contractile 'purse string' to close up the embryonic wound.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Odland, G. & Ross, R. J. Cell Biol. 39, 135–151 (1968).

    Article  CAS  Google Scholar 

  2. Krawczyk, W. S. J. Cell Biol. 49, 247–263 (1971).

    Article  CAS  Google Scholar 

  3. Pang, S. C., Daniels, W. H. & Buck, R. C. Am. J. Anat. 153, 177–192 (1978).

    Article  CAS  Google Scholar 

  4. Bereiter-Hahn, J. in Biology of the Integument (eds Bereiter-Hahn, J., Matoltsy, A. G. & Richards, K. S.) 443–471 (Springer, New York, 1986).

    Google Scholar 

  5. Buck, R. C. Invest. Ophthalmol. Vis. Sci. 18, 767–784 (1979).

    CAS  PubMed  Google Scholar 

  6. Gabbiani, G. Int. Rev. Cytol. 48, 187–219 (1977).

    Article  CAS  Google Scholar 

  7. Honig, M. G. & Hume, R. I. Trends Neurosci. 12, 333–341 (1989).

    Article  CAS  Google Scholar 

  8. Trinkaus, J. P. Cells into Organs: the Forces that Shape the Embryo (Prentice-Hall, Englewood Cliffs, 1984).

    Google Scholar 

  9. Wulf, E., Deboben, A., Bautz, F. A., Faulstich, H. & Wieland, T. Proc. natn. Acad. Sci. U.S.A. 76, 4498–4502 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Geiger, B., Volk, T., Volberg, T. & Bendori, R. J. Cell Sci. (suppl.) 8, 251–272 (1987).

    Article  CAS  Google Scholar 

  11. DiPasquale, A. Expl Cell Res. 94, 191–215 (1975).

    Article  CAS  Google Scholar 

  12. Thévenet, A. Archs Anat. microsc. Morph. exp. 70, 227–244 (1981).

    Google Scholar 

  13. Stanisstreet, M., Wakely, J. & England, M. A. J. Embryol. exp Morphol. 59, 341–353 (1980).

    CAS  PubMed  Google Scholar 

  14. Smedley, M. J. & Stanisstreet, M. J. Embryol. exp. Morphol. 83, 109–117 (1984).

    CAS  PubMed  Google Scholar 

  15. Radice, G. P. Devl Biol. 76, 26–46 (1980).

    Article  CAS  Google Scholar 

  16. Vaughan, R. B. & Trinkaus, J. P. J. Cell Sci. 1, 407–413 (1966).

    CAS  PubMed  Google Scholar 

  17. Kolega, J. J. Cell Biol. 102, 1400–1411 (1986).

    Article  CAS  Google Scholar 

  18. Sherratt, J. A. & Lewis, J. Bull. Math. Biol. (in the press).

  19. Stanisstreet, M. J. Embryol. exp Morphol. 67, 195–205 (1982).

    CAS  PubMed  Google Scholar 

  20. Martin, P. & Nobes, C. D. Mech. Dev. 38, 209–216 (1992).

    Article  CAS  Google Scholar 

  21. Komuro, I. et al. J. biol. Chem. 266, 1265–1268 (1991).

    CAS  PubMed  Google Scholar 

  22. Ben-Ze'ev, A. BioEssays 13, 207–212 (1991).

    Article  CAS  Google Scholar 

  23. Fristrom, D. Tissue Cell 20, 645–690 (1988).

    Article  CAS  Google Scholar 

  24. Bard, J. Morphogenesis: The Cellular and Molecular Processes of Developmental Anatomy (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  25. Beloussov, L. V., Dorfman, J. G. & Cherdantzev, V. G. J. Embryol. exp. Morphol. 34, 559–574 (1975).

    CAS  PubMed  Google Scholar 

  26. Odell, G. M., Oster, G., Alberch, P. & Burnside, B. Devl Biol. 85, 446–462 (1981).

    Article  CAS  Google Scholar 

  27. Maupin-Szamier, P. & Pollard, T. D. J. Cell Biol. 77, 837–852 (1978).

    Article  CAS  Google Scholar 

  28. McDonald, K. J. ultrastruct. Res. 86, 107–118 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, P., Lewis, J. Actin cables and epidermal movement in embryonic wound healing. Nature 360, 179–183 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing