Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation

Abstract

MAJOR histocompatibility complex (MHC) class I molecules bind and deliver peptides derived from endogenously synthesized proteins to the cell surface for survey by cytotoxic T lymphocytes. It is believed that endogenous antigens are generally degraded in the cytosol, the resulting peptides being translocated into the endoplasmic reticulum where they bind to MHC class I molecules. Transporters containing an ATP-binding cassette encoded by the MHC class II region seem to be responsible for this transport1–8. Genes coding for two subunits of the '20S' proteasome (a multicatalytic proteinase) have been found in the vicinity of the two transporter genes in the MHC class II region, indicating that the proteasome could be the unknown proteolytic entity in the cytosol involved in the generation of MHC class I-binding peptides9–13. By introducing rat genes encoding the MHC-linked transporters into a human cell line lacking both transporter and proteasome subunit genes, we show here that the MHC-encoded proteasome subunits are not essential for stable MHC class I surface expression, or for processing and presentation of antigenic peptides from influenza virus and an intracellular protein.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Deverson, E. V. et al. Nature 348, 738–741 (1990).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Trowsdale, J. et al. Nature 348, 741–744 (1990).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Spies, T. et al. Nature 348, 744–747 (1990).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Monaco, J. J., Cho, S. & Attaya, M. Science 250, 1723–1726 (1990).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Powis, S. J. et al. Nature 354, 528–531 (1991).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kelly, A. et al. Nature 355, 641–644 (1992).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Spies, T. et al. Nature 355, 644–646 (1992).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Attaya, M. et al. Nature 355, 647–649 (1992).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Glynne, R. et al. Nature 353, 357–360 (1991).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Brown, M. G., Driscoll, J. & Monaco, J. J. Nature 353, 355–357 (1991).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ortiz-Navarrete, V. et al. Nature 353, 662–664 (1991).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Martinez, C. K. & Monaco, J. J. Nature 353, 664–667 (1991).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Kelly, A. et al. Nature 353, 667–668 (1991).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Rivett, A. J. Archs Biochem. Biophys. 268, 1–8 (1989).

    CAS  Article  Google Scholar 

  15. 15

    Salter, R. D., Howell, D. N. & Cresswell, P. Immunogenetics 21, 235–235 (1985).

    CAS  Article  Google Scholar 

  16. 16

    Townsend, A. et al. Cell 62, 285–295 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Kvist, S. & Hamann, U. Nature 348, 446–448 (1990).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Ortiz-Navarrete, V. & Hämmerling, G. J. Proc. natn. Acad. Sci. U.S.A. 88, 3594–3597 (1991).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Cerundolo, V. et al. Nature 345, 449–452 (1990).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hosken, N. A. & Bevan, M. J. Science 248, 367–370 (1990).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Powis, S. J. et al. Nature 357, 211–215 (1992).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Baas, E. J. et al. J. exp. Med. 176, 147–156 (1992).

    CAS  Article  Google Scholar 

  23. 23

    Henderson, R. A. et al. Science 255, 1264–1266 (1992).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Wei, M. L. & Cresswell, P. Nature 356, 443–446 (1992).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Goulmy, E. Transplant. Rev. 2, 29–53 (1988).

    Article  Google Scholar 

  26. 26

    Horai, S., v.d. Poel, J. & Goulmy, E. Immunogenetics 16, 135–142 (1992).

    Article  Google Scholar 

  27. 27

    Gotch, F., Rothbard, J., Howland, K., Townsend, A. & McMichael, A. Nature 326, 881–882 (1987).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Müller, C., Shi, L., Schneider, M., Ziegler, A. & Wernet, P. Hum. Immun. 6, 189–197 (1983).

    Article  Google Scholar 

  29. 29

    Müller, C. et al. Hum. Immun. 14, 333–349 (1985).

    Article  Google Scholar 

  30. 30

    Charron, D. J. & McDevitt, H. O. Proc. natn. Acad. Sci. U.S.A. 76, 6567–6571 (1979).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Müller, C., Ziegler, A., Müller, G., Schunter, F. & Wernet, P. Hum. Immun. 5, 269–281 (1981).

    Article  Google Scholar 

  32. 32

    Brodsky, F. M., Parham, P., Barnstable, C. J., Crumpton, M. J. & Bodmer, W. F. Immunol. Rev. 47, 3–61 (1979).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Momburg, F., Ortiz-Navarrete, V., Neefjes, J. et al. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 360, 174–177 (1992). https://doi.org/10.1038/360174a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.