Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pulsar glitches as probes of neutron star interiors

Abstract

PULSAR rotation rates generally decrease steadily owing to external electromagnetic braking torques, but occasionally show sudden increases ('glitches') followed by gradual recoveries that may last days or years. These events are thought to be consequences of angular momentum transfer between a solid crust, which rotates at the measured pulsar periodicity, and a more rapidly rotating "loose' component of the neutron star interior. Sudden braking of the differential rotation between the two components will cause a glitch1, and the subsequent re-establishment of rotational equilibrium between the two components represents the recovery2. Earlier studies, using particular models for the coupling between crust and interior, showed that the loose component carries 2.8% and 1% of the total moment of inertia of the Vela pulsar3 and PSR 1737 – 30 (ref. 4) respectively. Here, we analyse post-glitch recovery in four pulsars, and deduce that the loose component carries at least 0.8% of the total moment of inertia, independent of the form of the coupling. In the context of the 'vortex creep' model of recovery, in which the loose component is the inner-crust neutron superfluid2'5–7, the constraint on the moment of inertia rules out equations of state that are soft at high densities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, P. W. & Itoh, N. Nature 256, 25–27 (1975).

    Article  ADS  Google Scholar 

  2. Alpar, M. A., Anderson, P. W., Pines, D. & Shaham, J. Astrophys. J. 276, 325–334 (1984).

    Article  ADS  Google Scholar 

  3. Pines, D. & Alpar, M. A. in Structure and Evolution of Neutron Stars (eds Pines, D., Tamagaki, R. & Tsuruta, S.) (New York, Addison-Wesley, in the press).

  4. Michel, F. C., Bland Hawthorn, J. & Lyne, A. G. Mon. Not. R. astr. Soc. 246, 624–627 (1990).

    ADS  Google Scholar 

  5. Link, B. & Epstein, R. I. Astrophys. J. 373, 592–603 (1991).

    Article  ADS  Google Scholar 

  6. Link, B., Epstein, R. I. & Baym, G. Astrophys. J. (in the press).

  7. Epstein, R. I. & Baym, G. Astrophys. J. 328, 680–690 (1988).

    Article  ADS  Google Scholar 

  8. Alpar, M. A., Langer, S. A. & Sauls, J. A. Astrophys. J. 282, 533–541 (1985).

    Article  ADS  Google Scholar 

  9. Ainsworth, T. L., Wambach, J. & Pines, D. Phys. Lett. B222, 173–178 (1989).

    Article  CAS  Google Scholar 

  10. Chen, J. M. C., Clark, J. W., Krotscheck, E. & Smith, R. A. Nucl. Phys. A451, 509–540 (1986).

    Article  Google Scholar 

  11. Baym, G., Pethick, C. & Sutherland, P. Astrophys. J. 170, 299–317 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Pandharipande, V. R. Nucl. Phys. A174, 641–656 (1971).

    Article  CAS  Google Scholar 

  13. Friedman, B. & Pandharipande, V. R. Nucl. Phys. A361, 502–520 (1981).

    Article  Google Scholar 

  14. Bethe, H. A. & Johnson M. Nucl. Phys. A230, 1–58 (1976).

    Article  ADS  Google Scholar 

  15. Cohen, J. M., Langer, W. D., Rosen, L. C. & Cameron, A. G. W. Astrophys. Space Sci. 6, 228–239 (1970).

    Article  ADS  CAS  Google Scholar 

  16. Pandharipande, V. R. & Smith, R. A. Phys. Lett. B59, 15–18 (1975).

    Article  Google Scholar 

  17. Wolszczan, A. Nature 350, 688–690 (1991).

    Article  ADS  Google Scholar 

  18. Wiringa, R. B., Fiks, V. & Fabrocini, A. Phys. Rev. C38, 1010–1037 (1988).

    ADS  CAS  Google Scholar 

  19. Brown, G. E. Nature 336, 519–520 (1988).

    Article  ADS  Google Scholar 

  20. Brown, G. E., Bruenn, S. W. & Wheeler, J. C. Comments Astrophys. (in the press).

  21. Lohsen, E. H. G. Astr. Astrophys. Suppl. 44, 1–14 (1981).

    ADS  Google Scholar 

  22. Lyne, A. G. & Pritchard, R. S. Mon. Not. R. astr. Soc. 229, 223–226 (1987).

    Article  ADS  Google Scholar 

  23. Cordes, J. M., Downs, G. S. & Krause-Polstorff, J. Astrophys. J. 330, 847–869 (1988).

    Article  ADS  Google Scholar 

  24. McCulloch, P. M., Klekociuk, A. R., Hamilton, P. A. & Royle, G. W. R. Aust. J. Phys. 40, 725–730 (1987).

    Article  ADS  Google Scholar 

  25. McCulloch, P. M., Hamilton, P. A., McConnell, D. & King, E. A. Nature 346, 822–824 (1990).

    Article  ADS  Google Scholar 

  26. Lyne, A. G. Nature 326, 569–571 (1987).

    Article  ADS  Google Scholar 

  27. Downs, G. S. Astrophys. J. 257, L67–L70 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, B., Epstein, R. & Van Riper, K. Pulsar glitches as probes of neutron star interiors. Nature 359, 616–618 (1992). https://doi.org/10.1038/359616a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359616a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing