Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles

Abstract

MITOSIS comprises a complex set of overlapping motile events, many of which involve microtubule-dependent motor enzymes1,2. Here we describe a new member of the kinesin superfamily. The protein was originally identified as a spindle antigen by the CHO1 monoclonal antibody3 and shown to be required for mitotic progression4,5. We have cloned the gene that encodes this antigen and found that its sequence contains a domain with strong sequence similarity to the motor domain of kinesin-like proteins. The product of this gene, expressed in bacteria, can cross-bridge antiparallel microtubules in vitro, and in the presence of Mg–ATP, microtubules slide over one another in a fashion reminiscent of microtubule movements during spindle elongation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. McIntosh, J. R. & Pfarr, C. M. J. Cell Biol. 115, 577–585 (1991).

    Article  CAS  Google Scholar 

  2. Sawin, K. E. & Scholey, J. M. Trends Cell Biol. 1, 122–129 (1991).

    Article  CAS  Google Scholar 

  3. Sellitto, C. & Kuriyama, R. J. Cell Biol. 106, 431–439 (1988).

    Article  CAS  Google Scholar 

  4. Nislow, C. Sellitto, C., Kuriyama, R. & McIntosh, J. R. J. Cell Biol. 111, 511–522 (1990).

    Article  CAS  Google Scholar 

  5. Kuriyama, R. & Nislow, C. BioEssays 14, 81–88 (1992).

    Article  CAS  Google Scholar 

  6. Goldstein, L. S. B. Trends Cell Biol. 1, 93–98 (1991).

    Article  CAS  Google Scholar 

  7. Endow, S. A. Trends biochem Sci. 16, 221–225 (1991).

    Article  CAS  Google Scholar 

  8. Cole, D. G. et al. J. Cell Sci. 101, 291–301 (1992).

    CAS  PubMed  Google Scholar 

  9. Sawin, K. E., Mitchison, T. J. & Wordeman, L. G. J. Cell Sci. 101, 303–313 (1992).

    CAS  PubMed  Google Scholar 

  10. Garnier, J., Osguthorpe, D. J. & Robson, B. J. molec. Biol. 120, 97–120 (1978).

    Article  CAS  Google Scholar 

  11. Cohen, C. & Parry, D. A. D. Proteins Struct. Func. Genet. 7, 1–15 (1990).

    Article  CAS  Google Scholar 

  12. McLachlan, A. D. & Karn, J. J. molec. Biol. 164, 605–626 (1983).

    Article  CAS  Google Scholar 

  13. Yang, J. T., Layman, R. A. & Goldstein, L. S. B. Cell 56, 879–889 (1989).

    Article  CAS  Google Scholar 

  14. Roberts, B. Biochim. biophys. Acta 1008, 263–280 (1989).

    Article  CAS  Google Scholar 

  15. Jans, D. A., Ackerman, M. J., Bischoff, J. R., Beach, D. H. & Peters, R. J. Cell Biol. 115, 1203–1212 (1991).

    Article  CAS  Google Scholar 

  16. Hollenbeck, P. J. J. Cell Biol. 108, 2335–2342 (1989).

    Article  CAS  Google Scholar 

  17. Rodionov, V. I., Gyoeva, F. K. & Gelfand, V. I. Proc. natn. Acad. Sci. U.S.A. 8, 4956–4960 (1991).

    Article  ADS  Google Scholar 

  18. Pfarr, C. M. et al. Nature 345, 263–265 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Lombillo, V. A., Coue, M. & McIntosh, J. R. in Methods in Cell Biology. (ed. Scholey, J.) (Academic, Orlando, in the press).

  20. Heidemann, S. R. & McIntosh, J. R. Nature 286, 517–519 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Cande, W. Z. & Wolniak, S. M. J. Cell Biol. 79, 573–580 (1978).

    Article  CAS  Google Scholar 

  22. Cande, W. Z. et al. in Cell Movement Vol. 2 (eds Warner, F. D. & McIntosh, J. R.) 441–452 (Liss, New York, 1989).

    Google Scholar 

  23. Yen, T. J. et al. EMBO J. 10, 1245–1254 (1991).

    Article  CAS  Google Scholar 

  24. Saunders, W. S. & Hoyt, A. M. Cell 70, 451–458 (1992).

    Article  CAS  Google Scholar 

  25. Roof, D. M., Meluh, P. M. & Rose, M. D. Cold Spring Harb. Symp. quant. Biol. 56, 693–703 (1991).

    Article  CAS  Google Scholar 

  26. Hagan, I. & Yanagida, M. Nature 356, 74–76 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Kozak, M. J. Cell. Biol. 108, 229–241 (1989).

    Article  ADS  CAS  Google Scholar 

  28. MacDonald, R. J., Swift, G. H., Przybyla, A. E. & Chirgwin, J. M. Meth. Enzym. 152, 219–227 (1987).

    Article  CAS  Google Scholar 

  29. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Debenhoff, J. W. Meth. Enzym. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  30. Lin, K.-H. & Cheng, S.-Y. Biotechniques 11, 748–753 (1991).

    CAS  PubMed  Google Scholar 

  31. Williams, R. C. Jr & Dietrich, H. W. III Biochemistry 18, 2499–2503 (1979).

    Article  CAS  Google Scholar 

  32. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. B. Science 249, 42–47 (1990).

    Article  ADS  CAS  Google Scholar 

  33. Huang, B., Piperno, G. & Luck, D. J. L. J. biol. Chem. 254, 3091–3099 (1979).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nislow, C., Lombillo, V., Kuriyama, R. et al. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359, 543–547 (1992). https://doi.org/10.1038/359543a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359543a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing